

CodeIgniter for Rapid PHP
Application Development

Improve your PHP coding productivity with the
free compact open-source MVC CodeIgniter
framework!

David Upton

BIRMINGHAM - MUMBAI

CodeIgniter for Rapid PHP Application Development
Improve your PHP coding productivity with the free compact
open-source MVC CodeIgniter framework!

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2007

Production Reference: 1160707

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847191-74-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

David Upton

Reviewers

Rick Ellis

Derek Allard

Development Editor

Douglas Peterson

Assistant Development Editor

Nikhil Bangera

Technical Editor

Ajay S

Editorial Manager

Dipali Chittar

Project Manager

Abhijeet Deobhakta

Indexer

Bhushan Pangoankar

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

David Upton is a director of a specialized management consultancy company,
based in London but working around the world. His clients include some of the
world's largest companies. He is increasingly interested in web-enabling his work,
and seeking to turn ideas into robust professional applications by the simplest and
easiest route. He has so far written applications for two major companies in the UK.
His other interests include simulation, on which he writes a weblog that takes up far
too much of his time, and thinking.

I’d like to thank Rick Ellis for writing CI and for making it available,
free. This spirit of generosity with such valuable intellectual
property is what makes the Open Source movement a success, and
an example to the rest of us.

I’d also like to thank Rick, and Derek Allard, for undertaking a
technical review of the book and making many helpful suggestions.

Mark Barker inspired and helped me to understand Object
Orientation, during many Saturday evening ‘geek-outs’.

Lastly, but not least, my thanks to Julia, John, and James for their
love, support, and patience.

About the Reviewers

Rick Ellis is the founder and CEO of EllisLab.com, the company that develops
CodeIgniter and several other widely used web applications. Rick Ellis has a diverse
background in media technology, having worked in creative and technical capacities
on interactive projects for Disney, to feature films for Oliver Stone, and almost every
kind of web-based project in-between.

Derek Allard is a programmer, author, and award-winning instructor based
in Toronto, Canada. He builds web applications, is a standards and accessibility
supporter, a scripting and database guy, and a PHP junkie. A sought-after educator
and freelancer, Derek spends most of his time working with XHTML, PHP, XML
and JavaScript.

As a highly visible CodeIgniter community member, Derek was hired by EllisLab as
the Senior Technical Support Specialist. He devotes time to ensuring CodeIgniter
and their flagship content management system, ExpressionEngine, remain
market leaders.

He blogs about all things web at www.derekallard.com.

Table of Contents
Preface	 1
Chapter 1: Introduction to CodeIgniter 	 7

What can CodeIgniter Do for You? 	 7
Save Time	 8
Make Your Site More Robust 	 9

Keep Your Links Up-To-Date Automatically	 9
Save Database Crashes: 'prep' Your Data Entry Forms 	 10

Make Your Code Bolder	 11
Send Email Attachments without Hassles	 11
Save Bandwidth by Zipping Files That Users Need to Download	 12

Yes, But…What is CodeIgniter? What are Frameworks? 	 12
And Who is That Man?	 14
The 'Open Source' Business Model 	 15
What CI Doesn't Do	 16
License	 18
Summary	 19

Chapter 2: Two Minutes' Work: Setting up a CodeIgniter Site	 21
Prerequisites	 21
Installing CodeIgniter	 22
Exploring the File Structure	 23
The Configuration File	 24
Does it Work?	 25
Summary	 25

Chapter 3: Navigating Your Site	 27
MVC—Just Another Acronym?	 28
The Structure of a CI Site: Controllers and Views	 29

The Welcome Controller	 31
Working with Views	 32

Table of Contents

[ii]

The Default Controller	 33
CodeIgniter Syntax Rules	 33

Controller	 34
View	 34

Types of Files or Classes on a CI Site	 34
What are All Those Folders For?	 37
Designing a Better View	 37
Designing a Better Controller	 39

Getting Parameters to a Function	 40
Passing Data to a View	 41

How CI Classes Pass Information and Control to Each Other	 43
Calling Views	 43
Calling Functions Directly	 43
Interacting with Controllers	 44
It's Just Like an Egg-Cup	 45
An Example of a CI Helper: the URL Helper	 46
A Simple Library Example: Creating a Menu 	 48

Summary	 49
Chapter 4: Using CI to Simplify Databases	 51

Configuration Settings	 51
Designing the Database for Our Site	 52
Active Record 	 53

Advantages of Using the Active Record Class	 54
Saving Time	 54
Automatic Functionality	 54

Read Queries	 56
Displaying Query Results	 58
Create and Update Queries	 59
Delete Queries	 61
Mixing Active Record and 'Classic' Styles	 61

Summary	 62
Chapter Appendix: MYSQL Query to Set Up 'websites' Database	 63

Chapter 5: Simplifying HTML Pages and Forms	 67
Writing a View	 67
Long and Short PHP Syntax	 69
Nesting Views	 70
Practical Issues of Site Architecture	 73
CI's Form Helper: Entering Data	 74

Form Helper Advantage One: Clarity	 74
Form Helper Advantage Two: Automation	 77

Table of Contents

[iii]

My 'Display' Model	 78
CI's Validation Class: Checking Data Easily	 79

Set Up Validation	 80
Set Up the Controller	 81
Set Up the Forms	 81

Summary	 83
Chapter 6: Simplifying Sessions and Security 	 85

Starting to Design a Practical Site with CI 	 85
Moving Around the Site 	 86
Security/Sessions: Using Another CI Library Class	 91

Turning Sessions into Security	 94
Security	 96
Summary	 98

Chapter 7: CodeIgniter and Objects	 99
Object-Oriented Programming	 99

Working of the CI 'Super-Object'	 100
Copying by Reference	 103

Adding Your own Code to the CI 'Super-Object'	 105
Problems with the CI 'Super-Object'	 106
Summary	 109

Chapter 8: Using CI to Test Code	 111
Why Test, and What For?	 111
CI's Error Handling Class	 113
CI's Unit Test Class	 115

When to Use Unit Tests	 117
Example of a Unit Test	 118

CI's Benchmarking Class	 121
CI's Profiler Class	 122
Testing with Mock Databases	 123
Control and Timing	 124
Summary	 125

Chapter 9: Using CI to Communicate	 127
Using the FTP Class to Test Remote Files	 127
Machines Talking to Machines Again—XML-RPC	 129

Getting the XML-RPC Server and Client in Touch with Each Other	 131
Formatting XML-RPC Exchanges	 132
Debugging	 134
Issues with XML-RPC?	 135

Talking to Humans for a Change: the Email Class	 136
Summary	 139

Table of Contents

[iv]

Chapter 10: How CI Helps to Provide Dynamic Information	 141
The Date Helper: Converting and Localizing Dates	 142
Working with Text: the Text Helper and Inflector Helper	 145
Going International: the Language Class	 146
Making HTML Tables the Easy Way: the Table Class	 150
Caching Pages	 152
Summary	 154

Chapter 11: Using CI to Handle Files and Images	 155
The File Helper	 156
The Download Helper	 158
The File Upload Class	 160
CI's Image Class	 165
Easy File Compression with the CI Zip Class	 169
Summary	 169

Chapter 12: Production Versions, Updates, and Big Decisions	 171
Connections: Check the Config Files	 172

URLs	 172
Databases	 172
Other config Files	 173

Look Out for PHP 4/5 and Operating System Differences	 173
Diagnostic Tools	 174

Coping with Changes in New CI Versions	 177
How to Load Models, and What to Call Them	 178
How to Initialize Your Own 'library' Classes	 179

So Should I Update If a New CI Version Comes Out?	 179
How to Add On to CI's Basic Classes	 181
Summary	 183

Chapter 13: Instant CRUD—or Putting it All Together	 185
The CRUD Model: Design Philosophy	 186
The Standard Controller Format	 187
The Database Tables	 189
The Heart of the Model: the Array	 189
Function by Function: the CRUD Model	 192

Showall	 192
Reading the Data	 195
Delete and Trydelete	 196

Insert	 201
Insert2	 208
The Test Suite	 209

Summary	 214

Table of Contents

[�]

Chapter 14: The Verdict on CI 	 215
Some Code: the 'do_test' Model 	 216
A Balance Sheet	 225

Where CI Helped: Structure	 225
Where CI Helped: Simplicity	 226
Where CI Helped: Extra Functionality	 226

Problems with CI	 226
Completeness	 227
Ease of Use	 227

Summary	 228
Chapter 15: Resources and Extensions	 229

CI's User Forums	 230
Video Tutorials	 232

Available Plug-ins and Libraries	 232
AJAX/Javascript	 233
Authentication	 233
External Sites 	 235
Comparisons: Which Charting Library to Use? 	 235
CRUD: the Final Frontier	 238

Resources for Other Programmes, e.g. Xampplite, MySQL, PHP	 239
Summary	 240

Index	 241

Preface
This book sets out to explain some of the main features of CI. It doesn't cover them
all, or cover any of them in full detail. CI comes with an excellent on-line User Guide
that explains most things. This is downloaded with the CI files.

This book doesn't try to duplicate the User Guide. Instead it tries to make it easier for
you to pick up how the CI framework works, so you can decide whether it is right
for you, and start using it quickly.

In some places, this book goes beyond the User Guide, though, when it tries to
explain how CI works. (The User Guide is more practically oriented.) This means
that there are some fairly theoretical chapters in between the "here's how" pages. I've
found that it helps to understand what CI is doing under the hood; otherwise you
sometimes get puzzling error messages that aren't easy to resolve.

I've tried to use a 'real-world' example when showing sections of CI code. I want
to show that CI can be used to develop a serious website with a serious purpose.
I'm currently running several websites for clients, and I want a program that will
monitor them, test them in ways I specify, keep a database of what it has done, and
let me have reports when I want them.

The examples in this book don't show it in full detail, of course: but they do, I hope,
demonstrate that you can use CI to make pretty well any common coding simpler,
and some uncommon stuff as well.

This book steps you through the main features of CodeIgniter in a systematic way,
explaining them clearly with illustrative code examples.

Preface

[�]

What This Book Covers
Chapter 1 explains what CodeIgniter can do, the 'framework', and how CodeIgniter
fits in. It further talks about the open-source business model and gives some
disadvantages of CodeIgniter, at the end.

Chapter 2 explains what happens when you install the site, and which files will be
created. It gives a detailed overview of the required software, and explains the basic
configuration of CodeIgniter.

Chapter 3 explains how MVC helps to organize a dynamic website. It goes further
to explain the process by which CodeIgniter analyzes an incoming Internet request
and decodes which part of your code will handle it. Then CodeIgniter syntax rules
and the different types of files or classes you can find—or write for yourself—on a
CodeIgniter site are explained. At the end of the chapter, some practical hints on site
design are given.

Chapter 4 looks at how you set up a database to work with CodeIgniter, and then
how you use the Active Record class to manipulate the database.

Chapter 5 covers various ways of building views, how to create HTML forms quickly,
and how to validate your forms using CodeIgniter's validation class.

Chapter 6 looks at one of the basic questions affecting any website i.e. session
management and security; we also explore CodeIgniter's session class.

Chapter 7 covers the way in which CodeIgniter uses objects, and the different ways in
which you can write and use your own objects.

Chapter 8 covers CodeIgniter classes to help with testing: Unit tests, Benchmarking,
the 'profiler' and ways in which CodeIgniter helps you to involve your database in
tests without scrambling live data.

Chapter 9 looks at using CodeIgniter's FTP class and email class to make
communication easier, and then we venture into Web 2.0 territory using XML-RPC.

Chapter 10 talks about CodeIgniter classes that help in overcoming problems arising
regularly when you are building a website, for example, the date helper, the text and
inflector helpers, the language class, and the table class.

Chapter 11 looks at several useful CodeIgniter functions and helpers: file helper,
download helper, file upload class, image manipulation class, and the ZIP class.

Chapter 12 covers exploring your config files, using diagnostic tools, and potential
differences between servers, along with some notes on security.

Preface

[�]

Chapter 13 shows you how to generalize CRUD operations so that you can do them
with two classes: one for the controller, and one for the CRUD model.

Chapter 14 looks at some coding examples, bringing together a lot of the functions
that have been discussed bit by bit in the preceding chapters.

Chapter 15 looks at some of the resources available to you when you start to code
with CodeIgniter, such as the libraries for AJAX and JavaScript, authentication,
charting, and CRUD.

What You Need for This Book
Throughout this book, we will assume that you have the following packages
installed and available:

PHP 4.3.2 or above
A working web server
One of MySQL, MySQLi, MS SQL, Postgre, Oracle, SQLite, ODBC

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

$active_group = "default";
$db['default']['hostname'] = "";
$db['default']['username'] = "";
$db['default']['password'] = "";

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

</head>
<body>
<h1 class='test'><?php echo $mytitle; ?> </h1>
<p class='test'><?php echo $mytext; ?> </p>
</body>

•

•

•

Preface

[�]

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the
Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to CodeIgniter
Most of us just want to write applications that work well, and to do it as simply and
easily as we can. This book is about CodeIgniter, a tool for making PHP easier to use.

If you need to produce results, if you think that the details and intricacies of coding
are for geeks, then you should look at CodeIgniter (CI to its friends).

CI is free, lightweight, and simple to install, and it really does make your life much
easier. Just read this chapter to find out how:

What CI can do for you
What is a 'framework' and how does CI fit in?
The open-source business model
Some disadvantages of CI (no, it's not perfect)

What can CodeIgniter Do for You?
If you are already writing code in PHP, CodeIgniter will help you to do it better, and
more easily. It will cut down on the amount of code you actually type. Your scripts
will be easier to read and update. It will help you to give large websites a coherent
structure. It will discipline your coding and make it more robust, in some cases
without you even knowing it.

That's quite a big claim. You have already spent some time learning PHP, HTML,
CSS, a database, and several other acronyms' worth of geek speak. You need a basic,
but not necessarily an expert, knowledge of PHP to benefit from CI.

•

•

•

•

Introduction to CodeIgniter

[�]

CodeIgniter is not for you if:

You don't have a reasonable knowledge of PHP and HTML.
You want to write a basic Content Management System (CMS) quickly and
simply, with a minimum of coding. (Look at a product like
Expression Engine.)
You only want to write simple websites with a few standard features.

Save Time
CI doesn't take long to learn, and it quickly pays for your effort in the time saved
later on. Let's look at a simple measure:

How CI cuts down the amount of code you need to type.

This is not just good for the lazy. The less you type, the fewer mistakes you make,
and the less time you spend debugging your code. The smaller your code is, the
faster it loads and less space it takes up.

Here are two examples (which are explained later on in this book, so don't worry
now about how they work!).

Imagine you are writing a database query. This is how you might write a function
within your PHP programme to query a MySQL database:

 $connection = mysql_connect("localhost","fred","12345");
 mysql_select_db("websites", $connection);
 $result = mysql_query ("SELECT * FROM sites", $connection);
 while ($row = mysql_fetch_array($result, MYSQL_NUM))
 {
 foreach ($row as $attribute)
 print "{$attribute[1]} ";
 }

Now see how a CI function would handle a similar query:

$this->load->database('websites');
$query = $this->db->get('sites');
 foreach ($query->result() as $row)
 {
 print $row->url
 }

Compare the character counts: 244 for the traditional syntax; 112 for CI.

•

•

•

Chapter 1

[�]

Now let's imagine that you are writing a data entry form in HTML, and you want
a drop-down query box. Let's say this drop-down query box shows three options
and allows the user to select one of them. In HTML, a drop-down box can be created
like this:

<select name="type">
<option value="1">www.this.com</option>
<option value="2">www.that.com</option>
<option value="3" selected>www.theother.com</option>
</select>

CI's version is both shorter and, because it works from an array, more adapted to
PHP processing:

$urlarray = array(
 '1' => 'www.this.com',
 '2' => 'www.that.com',
 '3' => 'www.theother.com',
);

$variable .= form_dropdown('url', $urlarray, '1');

In HTML, you need to type 154 characters; in CI, 128.

Make Your Site More Robust
Although you don't need to write as much code, CI provides a lot of the standard
functionality for you, and remembers all those oddities and quirks. It keeps track
of things you may have forgotten all about. (Those little touches that distinguish
amateur sites from professional ones…)

Keep Your Links Up-To-Date Automatically
Imagine that you've just written a menu page, with lots of hyperlinks to other pages
in your site. They are all in the traditional HTML format:

<a href="http://www.mysite.com/index.php/start/hello/fred�
">say hello to Fred

Then, you decide to move the site to another URL. That means you have to go
painstakingly through your code, looking for each URL, and re-writing it, or else
none of your links will work.

CI gives you a simple function to write hyperlinks like this:

echo anchor(start/hello/fred, Say hello to Fred);

Introduction to CodeIgniter

[10]

CI also encourages you to put the URL of your site in a configuration file that the
rest of your site can access. CI's anchor function that we've used here automatically
refers to that configuration file. So, when you come to move your site, you only
need to change that one entry in the configuration file, and all your hyperlinks
update automatically.

Save Database Crashes: 'prep' Your Data Entry
Forms
Data entry is fraught with problems. Because of limitations of HTML and databases,
data that contain certain symbols— for example, apostrophes and quotation marks—
may cause your database to crash or to give results you did not expect.

The answer to this is to prepare or 'prep' your data in your data entry form, before it
is submitted to the database. All this takes time and a certain amount of extra coding.

CI's form helper does this, automatically. So, when you create an input box by typing:

echo form_input('username', 'johndoe');

You're also getting the hidden benefit of:

function form_prep($str = '')
{
 if ($str === '')
 {
 	 	return '';
 	}

 	$temp = '__TEMP_AMPERSANDS__';
 	
 	// Replace entities to temporary markers so that
 	// htmlspecialchars won't mess them up
 	$str = preg_replace("/&#(\d+);/", "$temp\\1;", $str);
 	$str = preg_replace("/&(\w+);/", "$temp\\1;", $str);

 	$str = htmlspecialchars($str);

 	// In case htmlspecialchars misses these.
 	$str = str_replace(array("'", '"'), array("'",
 """), $str);	
 	

 	// Decode the temp markers back to entities
 	$str = preg_replace("/$temp(\d+);/","&#\\1;",$str);
 	$str = preg_replace("/$temp(\w+);/","&\\1;",$str);	
 	

 	return $str;	
}

Chapter 1

[11]

This is code that handles special characters like '&'; so that they don't cause confusion
while your form is being submitted. As you can see, there is some quite tricky regex
code in there.

Possibly you like typing out regexes. Some people like lying on beds of nails, some
like listening to ABBA; it's a free country. (Well, it is where I'm writing this.) But
if you don't like these things, you can let CI do them for you (the regexes, I mean,
not ABBA), and you needn't even be aware of the code that's working away in the
background for you, every time you write that one simple line of code:

echo form_input('username', 'johndoe');

Make Your Code Bolder
CI also makes it easy to do things you might not have tried before. Of course, PHP
users can always integrate libraries from PEAR and other sources, but these aren't
always easy to integrate, or use, and their syntax and standards differ greatly. CI has
a common set of standards, and once you've mastered its syntax, all its parts work
together without complication. All its code is well-written and reliable, and is tested
out by its user community. It puts much more sophistication in your hands.

Let's look at two examples to illustrate this point.

Send Email Attachments without Hassles
Sending emails is a complex business. CI's code for doing it looks easy to follow:

$this->load->library('email');
$this->email->from('your@your-site.com', 'Your Name');
$this->email->subject('Email Test');
$this->email->message('Testing the email class.');
$this->email->send();

There are a number of issues involved in sending emails: setting word-wrapping
(and escaping it so long URLs don't get wrapped and broken up) for example, or
sending attachments. The standard PHP functions can get quite complex here, and
the result is that many code writers are tempted to avoid using these functions if
they possibly can.

CI's email class makes it simple to send an attachment. You write:

$this->email->attach('/path/to/photo1.jpg');

CI does the rest. Working behind the scenes, for example, is a function that sorts out
MIME types for nearly hundred different types of attachment. So it knows that
your photo, photo1.jpg,������������� ��� is an 'image/jpeg' MIME type. It remembers to generate

Introduction to CodeIgniter

[12]

boundary delimiters in the right places around your attachments. It takes care of
wrapping your text, and it allows you to easily mark out chunks of text you don't
want wrapped.

Save Bandwidth by Zipping Files That Users Need
to Download
To save bandwidth, it's a fairly common practice to compress or 'ZIP' files before
you download them. That's not something I've ever done, and I wouldn't know how
to go about it. On the other hand, CI has a nice facility that allows you to produce
zipped files with four lines of code:

$name = 'mydata1.txt';
$data = 'the contents of my file…………';
$this->zip->add_data($name, $data);
$this->zip->archive('c:/my_backup.zip');

Run this, and you find a ZIP archive on your C drive containing one file. Your ZIP
filer reader will unzip it and produce the original data for you.

People who use your site won't know that you've produced this impressive result
so easily. They'll be impressed! Your site will save bandwidth. You did it in minutes
rather than hours.

Yes, But…What is CodeIgniter? What are
Frameworks?
Shortly after programming was invented, someone noticed that it involved many
repetitive operations. And shortly after that, someone else—maybe it was Ada
Lovelace, spanner in hand, adjusting Babbage's differential engine, or maybe it was
Alan Turing at Bletchley Park—decided to modularize code, so you only had to
write certain chunks once, and could then re-use them. PHP programmers are used
to writing separate chunks of code in functions, and then storing those functions in
include files.

At one level, a framework is just that: lots of chunks of code, stored in separate files,
which simplify the coding of repetitive operations.

Chapter 1

[13]

In the examples above, connecting to the database or building HTML form elements
are abstracted and simplified for you. You call a function in the framework, which is
easier to handle than the original code.

It goes beyond that. Writing code involves continuous choices between the many
ways of tackling the same problem; so most frameworks also impose a set of choices
on you. They've started to handle the problem one way, so you have to go that way
as well. If these are sensible choices, this makes your life much simpler too. (If not,
it's like trying to write a sales brochure using Excel, or do cash-flow projections using
Word. Both can probably be done, but neither is the best use of your time.)

Sensible design decisions make sure that the things you need are accessible, but
prevent them from spilling over into each other. A good framework makes those
decisions for you, starting you off with a sensible foundation for your program and
guiding you through the next steps.

Mention frameworks nowadays, and people think of Ruby on Rails.

Rails has become the success story of the last year or so, because it apparently offers
effortless and rapid website development, with a minimum amount of coding.
Essentially, it is a structure and a set of tools, built for use with the Ruby language,
that allow you to build certain types of Ruby programs more quickly. It's not the
only framework for Ruby, but it is very effective and, deservedly, very popular. On
the other hand, if you have put in the time and effort to learn PHP, starting over
again in Ruby is a long haul.

There are several frameworks available for PHP as well. CI is only one of about 40.
They include the Zend framework, Cake, Trax, and others. There's a handy chart
at http://www.phpit.net/article/ten-different-php-frameworks/ that
compares ten of the most popular.

If you look at them, you'll notice that postings on their user forums get very
heated about which framework is the best. The truth seems to be that each has its
strengths, and none is without its own weaknesses. My touchstone is that I'm busy;
so frameworks should save me time, and having found one that works for me, I am
sticking to it. That's why this book is just about CI.

Introduction to CodeIgniter

[14]

And Who is That Man?

CI was written by Rick Ellis, rock musician turned programmer. Rick makes his
living as CEO of pMachine, which sells an excellent content management system
called Expression Engine. In January 2006, he wrote on his blog, http://www.
ellislab.com :

"… I spent a couple weeks researching and installing PHP frameworks, really
banging on quite a few of them, and I was absolutely dismayed. I discovered that
most frameworks suffer from these problems:

They have horrid, terrible documentation, if it exists at all.
They make an endless number of assumptions regarding your knowledge
and skill level, and generally expect you to figure it all out.
They are written for people who have root server privileges and can change
system settings.
They assume that you have access to the command line. In fact, many do not
work if you can't bash out commands.
They tend to require lots of dependencies, like the PEAR libraries or various
open source ones.
They tend to be needlessly complex to use, with obtuse syntax, XML based
templates, and other features that are simply not necessary for most web
applications.
They are either ponderously big, or too minimalist to be useful.
The most current frameworks only run on PHP 5, which at present only has a
5% adoption rate.

•

•

•

•

•

•

•

•

Chapter 1

[15]

I have yet to find a single PHP framework that is truly, really, actually simple to use,
is thoroughly documented from top to bottom, natively includes all the tools needed
to build robust applications, has a browser-based interface, and is designed for your
average PHP coder, without admin privileges, who uses a standard hosting account.
Not one. Which leads me to think there's a market for just such a product. …"

The result was CI, written as a spare time project. Rick generously decided to make
it available, free of charge. In between running his business, he also updates CI from
time to time. He's also created an excellent forum, where CI users can raise issues
and share tips, as well as finding (and sometimes solving) bugs in his code. All this is
available on the CI website at http://www.codeigniter.com/.

Did he meet his own objectives? Read on and judge for yourself…

The 'Open Source' Business Model
There can be something disconcerting about this sort of software. If you like your
software with expensive support contracts and a 'big company' name, then CI is not
for you. (But then, what are you doing using PHP, anyway? PHP users know that
support, and the development of PHP software, depends partly on the unpaid efforts
of the 'community'—hundreds or thousands of users.)

There are some problems with community support. Consistency and high quality are
not 'guaranteed'—anyone can post to the forum, and sometimes these postings are
just plain wrong. (Note that if you read the small print on the licence for expensive
commercial software, quality isn't guaranteed there either.) But with 'open source'
products, you do have to take an intelligent interest rather than accepting everything
you read on forums at face value. CI is a framework for people who are able to take
an intelligent interest.

However, any sensible developer has to wonder if it's wise to invest time and energy
in a product that is a 'one man band'. Rick Ellis wrote it as a spare time project,
with some help from his pMachine colleague Paul Burdick. It's free. He makes no
commitment to maintain it or develop it. He might go back to being a rock musician.

On the other hand, once you've downloaded it, the version you downloaded will
continue to work. You don't have to rely on upgrades and patches. Rick's coding is
excellent and there have been few serious bugs in it. If it works for you, then there
is no reason why it shouldn't continue to work. So far I've only found two cases in
which my code failed to work, and the fault was a bug in the framework rather than
in my own coding on top of it. (Both bugs have since been solved.)

Introduction to CodeIgniter

[16]

The CI website is the gateway to the community and forums.

What CI Doesn't Do
There are some things that CI doesn't do. Rick intended CI to be a small and
'lightweight' framework. (The zipped download for version 1.5 is only 737 KB and
downloads in seconds. The Zend framework is 10 megabytes.) It's not the answer to
all the problems you will ever have. But it does:

Make it easier and quicker to programme in PHP
Structure your site and help you through the architectural decisions.

•

•

Chapter 1

[17]

One result of being 'lightweight' is that it does not have as many features as some
of its rivals. Rails has achieved prominence partly because it contains 'scaffolding'
and 'generators'. These are tools that automatically write certain basic scripts for
you. So, for example, once you have set up a database, Rails creates 'out-of-the-box'
web pages to do basic Create, Read, Update, and Delete (CRUD) operations on the
database tables.

In addition, Rails allows you to write 'generators'—pieces of code that automatically
write other basic scripts. The Rails community has created quite a lot of these; so you
can automatically generate scripts that do all sorts of clever things.

CI doesn't do this. (There is rudimentary 'scaffolding'—scaffolds are templates that
describe how the application database maybe used— in CI, but as the online manual
puts it: "Scaffolding is intended for development use only. It provides very little
security…. If you use scaffolding make sure you disable it immediately after you are
through using it. DO NOT leave it enabled on a live site." Enough said.)

Instead CI concentrates on making basic things easy. Some of the things it handles are:

Session management and cookies (see Chapter 6)
Database access and queries (see Chapter 4)
Building HTML stuff, like pages and forms, and validating form entries
(see Chapter 5)
Testing (Chapter 8)
Communicating on the Internet, using FTP or XMLRPC (Chapter 9)

Sound familiar? All of these are basic processes, which you will have to go through if
you're building a dynamic website. CI makes these processes easier, and makes your
code more likely to work.

•

•

•

•

•

Introduction to CodeIgniter

[18]

License
If you are building a commercial application, the license terms for any software you
are using become critical. (If you are raising venture capital, expect the VC's lawyers
to go over them in detail.) No problems with CI. It has a very generous licence that is
downloaded with your files.

Unlike some commercial software I could think of, CI's license even fits on one
screen. Here it is, in the following screenshot:

Chapter 1

[19]

Summary
If you already know some PHP and are writing intelligent websites, the CodeIgniter
framework is all about making your life easier. It helps you

Save time
Make your site more robust
Achieve more sophisticated coding

It makes coding fun again, rather than a chore.

There are quite a few frameworks, and not just for the PHP language. All of them
offer you chunks of pre-written code that make the repetitive or complex processes
of coding easier, and impose a helpful structure on your site development.

This book does not make any comparisons between frameworks. I've found CI
works for me, and I want to explain how and why. I hope that's useful to you, and
that you will be able to save as much time as I did, and enjoy the coding process
more, as a result.

This book takes you through some of the framework's main features, and tries to
explain some of what goes on 'under the hood'.

I've used a real-world example for the code illustrations in this book to try
to show that CI is a serious tool that can be quickly and easily used in a
demanding environment.

Enjoy!

•

•

•

Two Minutes' Work: Setting
up a CodeIgniter Site

Setting up the CI package on your web server is easy. This small chapter explains
what happens when you install the site, and which files will be created. Let's look at:

What software you require for your development site
Installing the CI files: a simple download and unzip operation
The basic configuration of CI: what the folders are and how they
are organized
The initial controller and view that CI installs
Some basic modifications to show how these work

Prerequisites
CodeIgniter is very flexible. It will work equally well with PHP 4.3.2 and above, or
PHP 5. Since the majority of ISPs still don't support PHP 5, this is useful, and keeps
down the hosting costs.

You will also need a database. CI's online user guide says: "Supported databases are
MySQL, MySQLi, MS SQL, Postgre, Oracle, SQLite, and ODBC."

In order to develop and test a dynamic website, you need a web server. Normally,
you would develop and test your site on a local server, i.e., one that runs on your
own machine (with the loopback address 127.0.0.1 or localhost) rather than on a
remote site on the Internet.

•

•

•

•

•

Two Minutes' Work: Setting up a CodeIgniter Site

[22]

If you aren't familiar with the process of setting up a web server, it's easiest to install
a package such as Xampplite, which installs Apache, PHP, and MySQL on to a
Windows machine with minimum configuration by you. Xampplite is free, comes
with comprehensive instructions, and is almost always easy to install. Alternatively,
some versions of Windows come with their own web server.

It also helps to have a good PHP editor on your system. You can do it all on a
text editor, but I find that the syntax highlighting feature of a good editor saves
me from making lots of simple mistakes with unclosed brackets or mismatched
quotation marks.

Once you've reached this far, I estimate it will take you two minutes to have CI
running on your system.

Installing CodeIgniter
One thing you don't need is your credit card: CI is completely free!

Once your server is set up, go to the CodeIgniter site at
http://www.codeigniter.com/ and download the latest version of the framework.
Version 1.5.3, the latest, is only 737KB when zipped, so the download doesn't take
that long

Unzip the folder, and install the CodeIgniter files in your web root folder. If you are
using Xampplite, this is usually the htdocs folder within the Xampplite folder.

The CodeIgniter index.php file should be in the root directory. The root folder is the
folder that you would point at if you navigated to the site—in this case, by accessing
http://127.0.0.1. Of the two minutes we need to set up the site, one minute is up!

Included with CI is a comprehensive user guide (in the user_guide folder). You'll
use this a lot. It is usually clear, and often goes into more detail than this book can.
So, try it if you get stuck.

When these files are on your machine, you can access them in two ways:

As a URL—e.g., http://127.0.0.1
Through the normal directory path: e.g.,
C:/xampplite/htdocs/index.php

You should be able to see the CI welcome screen by simply navigating to your URL
with the browser. It's that simple! The welcome page tells you that what you are
seeing is built by two files, a view and a controller.

•

•

Chapter 2

[23]

Exploring the File Structure
Once you have installed the CI files, have a look at the new directories that have been
created. Understanding what the different types of files do is critical.

Your root folder should now look something like the diagram below. If you've ever
looked at Rails, this structure will look fairly familiar.

You can divide these folders into three groups:

The ones you will populate (e.g., controllers, models, and views: all in the
application folder). Apart from the welcome view and controller that you
have just seen, these folders are empty.
The files in the system folder are the system code for CI �(system/libraries,
system/codeigniter, system/drivers, etc.). You can read them, and alter
them if you wish—but don't do this until you understand how CI works.
And if you alter the base code, remember that you may have to alter it again
when you download an update of CodeIgniter, since the new version may
overwrite your alterations. You may also find that the new code no longer
works with your amendments. Lastly, you may find that what Rick wrote is
pretty good as it is.
The ones that are half written already, but may need additions or changes
(language, config, errors.) These folders are set to defaults, but you will
need to alter your config files right away; so let's get that over with.

•

•

•

Two Minutes' Work: Setting up a CodeIgniter Site

[24]

The Configuration File
Remember we were going to take two minutes to set our site up? The second minute
is spent doing some basic configuration.

The config folder contains a group of files that set basic configurations for your site.
Open the config/config.php file �� and tell the site where to find itself. The first few
lines of the file should say something like:

/*
|--
Base Site URL
URL to your Code Igniter root. Typically this
will be your base URL, WITH a trailing slash:
http://www.your-site.com/
*/
$config['base_url'] = "http://127.0.0.1/";
/*

Notice how well CI files are commented!

Alter the values in quotes to match your own web root. If you have a problem, more
detailed setup instructions are given in the online manual.

As a basic principle, use the config.php file to store information about your site
rather than scattering it around your files. Firstly, it is easier to update if it's all in
one place. Secondly, when you transfer your site from the development server to the
production server, you'll only have to make only one set of changes. Lastly, many CI
functions assume that certain information is to be found there.

There are other config files in the config folder, but you can safely leave them at
their default settings for now.

Of the two minutes we needed to set up the site that was the second one. In the rest
of this chapter, we'll play around with our site.

Chapter 2

[25]

Does it Work?
The easy way to see if your site is working is to navigate to it using your
browser. Assuming you're running it in the root folder of a local server, type in
http://127.0.0.1 and you should see this:

That means CI is up and running. Did it take you more than two minutes?

Summary
In this chapter, we've seen how easy it is to install CI. Once you have a development
web server set up, all you need to do is download the CI code, unzip it, and copy
it over.

Then, we looked quickly at the shape of the files we've installed and did some basic
configuration, and there we were: a working CI site.

If this chapter is disappointingly short, it's because CI is easy to install. Like
everything else in this book, it's about saving time and making life easier.

Navigating Your Site
Now that we've installed CI, we need to understand how it works.

Readers familiar with design patterns will have recognized by now that CI
implements the Model—View—Controller (MVC) pattern. This is a method of
organizing the files that make up a website, or, if you like, of splitting the site into
sensible parts rather than having one huge lump of code.

In this chapter, we'll look briefly at the theory behind MVC, and then at the way CI
organizes itself internally. �� In particular, what goes in those different folders and how
do they communicate? How is a site structured? And how does CI navigate
around it?

This chapter looks at:

How MVC helps to organize a dynamic website
The process by which CI analyzes an incoming Internet request and decides
which part of your code will handle it
What the code does then
CodeIgniter syntax rules
The different types of files or classes you can find—or write for yourself—on
a CI site
How to pass parameters to controllers using the URL
How to write better views and pass dynamic data to them
How a reply is returned to the surfer
How the files or classes pass information and control to each other
How useful code is kept inside helper and library files
Some practical hints on site design.

•

•

•

•

•

•

•

•

•

•

•

Navigating Your Site

[28]

MVC—Just Another Acronym?
MVC is a means of organizing a dynamic website. The design pattern has been
around since 1979 when it was first described by the Norwegian, Trygve Reenskaug.
Here's an outline of the different types of files:

Models are objects, which represent the underlying data. They hover above
the database and access it as required. They can also perform operations on
data to add meaning to it.
Views show the state of the model. They are responsible for displaying
information to the end user. (Although they are normally HMTL views, they
might be any form of interface. They might be views specially adapted for
small PDA screens or WAP telephones, for example.)
Controllers offer options to change the state of the model. They are
responsible for consulting models. They provide the dynamic data to views.

CI has subfolders for models, views, and controllers. Each file within them is a
.php file, usually in the form of a class that follows certain naming conventions.

CI helps you to follow the MVC pattern, and as a result makes it much easier to lay
your code out. CI allows you a lot of flexibility, and you get all the advantages of the
MVC structure.

Try to think in MVC terms as you write. As far as possible, try to keep your 'views'
focused purely on presentation, and your 'controllers' purely on controlling
application flow. Keep the application logic in the data models and the database.

This way, if you do decide to create a new set of views for a new display method,
you don't have to alter much code in any of the controllers or the models. If you
update some of your 'business logic', you only have to change code in the models.

On the other hand, while this is a very interesting and useful division, it's important
not to take it too seriously. MVC is intended to help you and not to be a straitjacket.
Different programs and frameworks implement MVC in slightly different ways.
The CI forums contain many anguished queries about the 'right' way to implement
MVC. (Should I do database queries from controllers, or should this only be done
in models? Can I return a view directly from a model, or should I go through a
controller first?)

•

•

•

Chapter 3

[29]

Rather than trying to achieve the theoretically 'right' result, just keep in mind the two
useful principles. These are set out in the Design and Architectural Goals section of CI's
User Guide:

Loose Coupling: Coupling is the degree to which the components of a
system rely on each other. The less the components depend on each other,
the more re-usable and flexible the system becomes. Our goal was a very
loosely coupled system.
Component Singularity: Singularity is the degree to which components have
a narrowly focused purpose. In CodeIgniter, each class and its functions are
highly autonomous in order to allow maximum usefulness.

These were Rick Ellis's objectives in building CI, and they are good objectives for
your own sites too. Provided that you meet these objectives, it doesn't matter very
much what your code sections are called.

It does work. My own experience is that 'loose coupled' helpers or libraries
written for one site can be very easily dropped in to another, saving hours of
development time.

So, if your controller queries the database directly, or your model calls a view, the
CI code will work properly—there's usually no technical issue—but your MVC
interpretation may not be 'correct'. Don't worry, be happy!

The Structure of a CI Site: Controllers
and Views
Your entire CI site is dynamic. That is, there are probably no 'static' pages that you
can look at as simple HTML code. (You can add some if you wish, but they'll be
outside the CI framework.) So, where is your site?

When we installed CI, we noticed that the application folder includes subfolders
called models, views, and controllers. Each response that a CI site produces is
assembled by these three types of files.

Let's look at the process in detail.

To emphasize the point that we are not dealing with static pages, each with its own
URL, we will show you the 'URL' request and show how CI interprets it. First of all,
consider a normal Internet request. A connection is made to the URL of your site,
www.example.com, and then through the socket comes an HTTP request like:

GET /folder/file.html HTTP/1.0

•

•

Navigating Your Site

[30]

GET is the type of request, HTTP/1.0 is the version of HTTP being used, and
everything in between is the relative path, and name of your file. But on your site,
there are no simple static HTML files to be found. Instead, all incoming requests are
intercepted by the index.php file.

If the user is requesting a page on your site with the correct URL—say by clicking on
a hyperlink on one of your pages—the request will look more like this:

GET /index.php/tests/showall HTTP/1.0

If the user doesn't know the exact URL and just requests www.example.com, then CI
has a system for setting a default address (We'll see how to do that in a moment.). In
either case, the steps are:

Internet request comes in:

“GET http://127.0.0.1”

Router: decides which controller

should handle this request

View: formats the response

(in this case as an HTML page)

Page is served up to enquirer

Model: provides data

Controller: analyzes the

request and responds: maybe

by getting data from the model

A request coming in from the Internet to your web root is intercepted by the index.
php file, which acts as a 'router'. That is, it calls a 'controller', which then returns
a 'view'.

How does the router know which controller to call? As we've seen, sometimes the
incoming request tells it. For instance, if the request says:

GET http://127.0.0.1/index.php/welcome/index

and if you have a controller called welcome, that's where the request goes.

Chapter 3

[31]

The Welcome Controller
So, let's look at the welcome controller. It's the one controller that has already been
written and the code is at system/application/controllers/welcome.php. Here's
what it says:

<?php
 class Welcome extends Controller
 {
 function Welcome()
 {
 parent::Controller();	
 }
 function index()
 {
 $this->load->view('welcome_message');
 }

 }
?>

You'll see from the second line that this file is a class. Every controller inherits from
an original Controller class—hence extends Controller. Within the class are two
functions or methods—Welcome() and index().

CI requires controller names to start with an uppercase letter (class
Welcome), though the file is saved as /system/application/
controllers/welcome.php—the same name but with a
lowercase letter.

The next three lines make up the constructor function. Notice that CI uses the older
PHP 4 convention for naming constructor functions, which is also acceptable on
PHP 5—it doesn't require you to use PHP 5 and is happy with either version of
the language. The constructor function is used to set up the class each time you
instantiate it. In here, you put any instructions to load other libraries or models, or
any definitions of class variables.

So far the only thing inside the constructor is the parent::Controller() statement.
This is just way of making sure that you inherit the functionality of the Controller
class. If you want to understand the parent CI Controller class in detail, you can
look at the file /system/libraries/controller.php.

Navigating Your Site

[32]

(One of the reassuring things about CI is that all the code is there for you to inspect,
though you don't often need to.)

Working with Views
Let's go back to the incoming request for a moment. The router needs to know, not
only which controller should handle the request, but also which function within that
controller. That is why the request is specified GET http://127.0.0.1/welcome/
index. So the router looks for a function inside the welcome controller called index.
And here it is!

Then comes the index() function. This function simply loads a view
('welcome_view') using CI's loader function (this->load->view). At this stage,
it doesn't do anything cool with the view, such as passing it dynamic information.
That comes later.

The 'welcome_view' it wants to load is in the views folder that you have just
installed: system/application/views/welcome_view.php. This particular view
is only a simple HTML page, but it is saved as a PHP file because most views have
PHP code in them. (No point in doing all this if we're only going to serve up plain
old static HTML.)

Here's the (slightly shortened) code for the view:

<html>
<head>
 <title>Welcome to Code Igniter</title>

 <style type="text/css">

 body
 {
 background-color: #fff;
 margin: 40px;
 ���������������������������� �������������������� font-family: Lucida Grande, Verdana, Sans-serif;
 ���������������� font-size: 14px;
 color: #4F5155;
 }

. more style information here

 </style>
</head>
<body>

 <h1>Welcome to Code Igniter!</h1>

 <p>The page you are looking at is being generated dynamically by
 Code Igniter.</p>

Chapter 3

[33]

 <p>If you would like to edit this page you'll find it located at:</p>
 <code>system/application/views/welcome_message.php</code>

 <p>The corresponding controller for this page is found at:</p>
 <code>system/application/controllers/welcome.php</code>

 <p>If you are exploring Code Igniter for the very first time, you
 should start by reading the User
 Guide.</p>

</body>
</html>

As you can see, it consists entirely of HTML, with an embedded CSS stylesheet. In
this simple example, the controller hasn't passed any variables to the view.

The Default Controller
I mentioned earlier that CI routes requests to a default controller if the request
doesn't specify where it wants to go. You set the default controller from a config
file—in this case it's /system/application/config/routes. This contains:

$route['default_controller'] = "welcome";

If you don't set a default, the site users who don't know the exact URL to
request—that's most of them, when you think about it—will get '404 not
found' pages.

In this case, the default route is to your welcome controller.

If no function is specified, the route defaults to the /index function of whatever
controller is selected, so make sure you include an index function, if only to
prevent '404' pages. Please note that the index function is not the same as the
constructor function.

You can alter this default if you like, by including in the controller(s) you want to
alter, a function called _remap($function), where $function is the function
you want to intercept and redirect. _remap always gets called first, whatever the
URL says.

CodeIgniter Syntax Rules
Before we start, let's just summarize the syntax rules that CI uses. The framework
expects files to be set out in certain ways, otherwise it may have difficulty
indentifying your files properly, or using them.

Navigating Your Site

[34]

Controller
This is a class (i.e. OO code). It is called directly by the URL, e.g., 'www.example.
com/index.php/start/hello'. Controllers are used to call functions by name, e.g.,
mainpage(); however, you cannot call functions inside another controller.

Syntax: Controllers begin with class Start extends Controller (where the name
of the controller has the first letter in uppercase) and are saved as a .php file in the
/system/application/controllers folder. When saved, they should not have
the first letter in uppercase; as in start.php and not Start.php. Also, they should
include constructor containing at least:

function display()
 {parent::Controller();}

All other code must be written as separate functions within the class
e.g., hello() function

View
Views are HTML files that can contain PHP 'islands'. They are loaded by
$this->load->view('testview', $data). Loading and using the view are done in
the same action.

Syntax: The view is written in HTML. The PHP code is included within <?php ?>
tags as with any HTML file. It is saved as a .php file in the views folder.

Types of Files or Classes on a CI Site
There are several different sub-folders within the application folder. We have
already looked at the controller, config, and views folders.

But what are libraries, models, and scripts? This is one area where CI seems rather
confusing. (If you have used versions of CI before version 1.5, you'll realize why.
Rick Ellis wasn't happy with the earlier versions and has changed the structure quite
a lot. However, for compatibility reasons, some anomalies remain.)

In a technical sense, these folders are treated in much the same way. There's no
reason why you shouldn't put your code in any of these folders, though you'll have
to make it slightly different in each.

Let's say that you have written a block of code called display, for example, which
contains a function called mainpage. There are four ways you might have done this:
as a model, a library, a helper, or a plug-in. The following table summarizes the
differences between each approach, and shows you how to load and use each type.

Chapter 3

[35]

File type How to use it
model This is a class (i.e. it's object-oriented or OO code)

Load it like this: $this->load->model('display');
Use it like this: $ this->display->mainpage();
Notes on syntax:
It must begin with class Display extends Model
It must include a constructor containing at least:
 function display()
 {parent::Model();}

and contain a separate mainpage() function.
Conceptually: The User Guide says, "Models are PHP classes that are
designed to work with information in your database."

library It is present in both the system and the application folder.
Again, this is a class. (Note: your own libraries are not automatically
included in the CI super-object, so you need to call CI resources in a
different way. See Chapter 7 for details)
Load it like this: $this->load->library('display');
Use it like this: $this->display->mainpage();
Notes on syntax:
No need to extend a base class, or for a constructor function.
This is enough:
class Display()

{
 function mainpage()
 { //code here }

}

Conceptually: Intended to hold your own code to extend CI
functionality, or to create site-specific functionality.

helper It can be in the system/helpers folder or in an application/
helpers folder. This is a script (procedural code, not an OO class)
Load it like this: $this->load->helper('display');
Use a function from it like this: mainpage();
Notes on syntax:
The file should be saved as display_helper.php—i.e.,
add _helper to the file name.
mainpage() should be a function included in the file, which is
simply a collection of separate functions, not a class. As a result you
can't directly access CI's other resources any more.
Conceptually: 'helpers' are intended as a collection of low-level
functions to help you perform specific tasks.

Navigating Your Site

[36]

File type How to use it
plug-in It is present in the system/plugins folder but can also be created in

an applications/plugins folder. This is a script (not an OO class)
Load it like this: $this->load->plugin('display');
Use a function from it like this: mainpage();
Notes on syntax:
The file should be saved as display_pi.php—i.e. add _pi to end
of filename.
mainpage() should be a function included in the file, which is
simply a collection of separate functions, not a class. As a result, you
can't directly access CI's other resources any more.
Conceptually: The User Guide says, "…the main difference is that
a plug-in usually provides a single function, whereas a Helper is
usually a collection of functions….. plug-ins are intended to be
created and shared by our community." (See Chapter 15 for an
example plug-in.)

You could put your piece of new code in any of these folders, though you'd have to
write it as an object-oriented class in the first two, and as a procedural script in the
second, and in the latter case, you wouldn't be able to draw directly on other CI classes.
Otherwise, the difference between the types of folder is largely a conceptual one.

You'll notice that CI can have two sets of helpers, plug-ins, and libraries, though not
of models. There can be one set of each in the application folder, and another set in
the system folder. The difference, again, is largely conceptual.

Those in the system folder are intended to be part of the core CI code and to
be shared by all applications. If you update to a later version of CI, then you
will overwrite the system folder and these files may be modified.
Those in the application folder will only to be available to that one
application. If you update to a new version of CI, the application folder
will not be overwritten.
When you try to load a helper, plug-in, or library, CI sensibly looks in both
paths. If you attempt to load a library called display, for example, CI will
look first in your system/application/libraries directory. If the directory
does not exist or the display library is not there, CI will then look in the
system/libraries folder.
This means that it is possible to effectively over-write CI's core libraries,
helpers, and plug-ins by introducing your own with the same names in the
applications folder. Don't do this accidentally. However, this flexibility is
a great advantage for experienced CI users if you want to extend the basic
classes and scripts that come with CI—see Chapter 13.

•

•

•

•

Chapter 3

[37]

What are All Those Folders For?
Now that we've looked at the key types of folder in some detail, here is a reference
table of the structure of a CI site.

application config Configuration files: hold basic information about your site
that persists between sessions

controllers Controllers
errors Contains templates for error announcements. You may

never need to touch these.
hooks Empty when first installed, use this for any 'hooks' you

create. Hooks are a way of controlling the way other
files load.

libraries Collections of your code, intended to work with this
specific application

models Collections of your code, again intended to work with this
specific application

views Templates for showing information to the user
cache Empty when first installed: if you enable caching (see Chapter 10) data is

stored here
codeigniter Basic system files.
database Library files for CI's database class.
fonts Not explained in the user guide, except as a place to store fonts for

watermarking images
helpers System level 'helpers'
language You can store your own lists of key phrases here—see Chapter 11
libraries System level libraries
logs If you set the system to log errors, log files are created here

by default
plugins More system-level code blocks
scaffolding System-level library to enable rudimentary 'scaffolding'.

Designing a Better View
At this stage, you might ask why we are going through so much effort to serve up
a simple HTML page. Why not put everything in one file? For a simple site, that's
a valid point—but whoever heard of a simple site? One of the coolest things about
CI is the way it helps us to develop a consistent structure, so that as we add to and
develop our site, it is internally consistent, well laid out, and simple to maintain.

Navigating Your Site

[38]

At the start, we need three common steps:

Write a view page
Write a stylesheet
Update our config file to specify where the stylesheet is

After this is done, we need to update our controller to accept parameters from the
URL, and pass variables to the view.

First, let's redesign our view and save it as:
system/application/views/testview.php.

 <html>
 <head>
 <!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0
 Strict//EN'http:\/\/www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>
 <html xmlns='http:\/\/www.w3.org/1999/xhtml'>
 <title>Web test Site</title>
 <base href= <?php echo "$base"; ?> �>
 <link rel="stylesheet" type="text/css" href="<?php echo
 "$base/$css";?>">
 </head>
 <body>
 <h1><?php echo $mytitle; ?> </h1>
 <p class='test'> <?php echo $mytext; ?> </p>
 </body>
 </html>

It's still mostly HTML, but notice the PHP 'code islands' in the highlighted lines.

You'll notice that the first bits of PHP code build in a link to a stylesheet. Let's save a
simple stylesheet as mystyles.css, in the site's root folder. It just says:

h1 {
margin: 5px;
padding-left: 10px;
padding-right: 10px;
background: #ffffff;
color: blue;
width: 100%;
font-size: 36px;
}

.test{
margin: 5px;
padding-left: 10px;
padding-right: 10px;

•

•

•

Chapter 3

[39]

background: #ffffff;
color: red;
width: 100%;
font-size: 36px;
}

That gives us two styles to play with, and you'll see we've used them both in
the view.

Firstly, let's add an entry to the config file:

$config['css'] = "mystyles.css";

This is simply to tell the site the name and address of the CSS file that we've
just written.

But note that the link to the stylesheet is referenced at $base/$css—where do those
variables $base and $css, get their values? And come to think of it, those variables
$mytitle and $mytext at the end of the code? We need a new controller!

Designing a Better Controller
Now, we need a new controller. We'll call it Start and save it as
/system/ application/controllers/start.php.

This controller has to do several things:

Call a view
Provide the view with the base URL and the location of the css file we
just wrote
Provide the view with some data: it's expecting a title ($mytitle) and some
text ($mytext)
Lastly, we want the controller to accept a parameter from the user (i.e. via the
URL request)

In other words, we have to populate the variables in the view. So let's start with our
Start controller. This is an OO class:

<?php
class Start extends Controller {
 var $base;
 var $css;

•

•

•

•

Navigating Your Site

[40]

Notice that here we've declared the $base (the web root address), and $css (the css
filename) as variables or class properties. This saves us from having to re-declare
them if we write more than one function in each class. But you can define and use
them as local variables within one function, if you prefer.

The constructor function now defines the properties we've declared, by looking them
up in the config file. To do this, we use the syntax:

$this->config->item('name_of_config_variable');

as in:

 function Start()
 {
 parent::Controller();
 $this->base = $this->config->item('base_url');
 $this->css = $this->config->item('css');
 }

and CI recovers whatever we entered in the config file against that name.

Using this system, however many controllers and functions we write, we'll only have
to change these fundamental variables once, even if our site becomes so popular that
we have to move it to a bigger server.

Getting Parameters to a Function
Now, within the Start controller class, let's define the function that will actually do
the work.

	 function hello($name)
	 {
	 $data['css'] = $this->css;
	 $data['base'] = $this->base;
	 $data['mytitle'] = 'Welcome to this site';
	 $data['mytext'] = "Hello, $name, now we're getting dynamic!";
	 $this->load->view('testview', $data);
 }

This function expects a parameter, $name, (but you can set a default value—
myfunction($myvariable = 0)), which it uses to build up the string assigned to
the $mytext variable. Well, as we had just asked, where does that come from?

In this case, it needs to come from the URL request, where it will be the third
parameter. So, it comes via the HTTP request:

GET /index.php/start/hello/fred HTTP/1.0

Chapter 3

[41]

Or in other words, when you type in the URL:
http://www.mysite.com/index.php/start/hello/fred

Note that this example code doesn't 'clean' the passed variable fred,
or check it in any way. You might want to do this in production code.
We'll look at how to check form inputs in Chapter 7. Normally, variables
passed by hyperlinks in this way are generated by your own site. A
malicious user could easily add his or her own, just by sending a URL
like: http://www.mysite.com/index.php/start/hello/my_
malicious_variable. So, you might want to check that the variables
you receive are within the range you expect before handling them.

The last segment of the URL is passed to the function as a parameter. In fact, you
can add more segments of extra parameters if you like, subject to the practical limits
imposed by your browser.

Let's recap on how CI handles URLs, since we've covered it all now:

URL segment What it Does
http://www.mysite.com The base URL that finds your site.
/index.php Finds the CI router that sets about reading the rest of the

URL and selecting the correct route into your site.
/start The name of the controller CI will call. (If no name is set, CI

will call whichever default controller you've specified.)
/hello The name of a function that CI will call, inside the selected

controller. (If no function is specified, defaults to the index
function, unless you've used _remap.)

/fred CI passes this to the function as a variable.
If there is a further URL
segment, e.g. /bert

CI passes this to the function as a second variable.

More variables CI will pass further URL segments on as further variables.

Passing Data to a View
Let's go back to the hello function:

 function hello($name)
 {
 $data['css'] = $this->css;
 $data['base'] = $this->base;
 $data['mytitle'] = 'Welcome to this site';
 $data['mytext'] = "Hello, $name, now we're getting dynamic!";
 $this->load->view('testview', $data);
 }

Navigating Your Site

[42]

Notice how the hello() function first creates an array called $data, taking a
mixture of object properties set up by the constructor and text.

Then it loads the view by name, with the array it has just built as the
second parameter.

Behind the scenes, CI makes good use of another PHP function: extract(). This
takes each value in the $data array and turns it into a new variable in its own
right—so the $data array that we've just defined is received by the view as a series
of separate variables: $text (equal to "Hello, $name, now we're getting
dynamic"), $css (equal to the value from the config file), and so on.

In other words, when it is built, the $data array looks like this:

Array
(
 [css] => mystyles.css
 [base] => http://127.0.0.1/packt
 [mytitle] => Welcome to this site
 [mytext] => Hello, fred, now we're getting dynamic!
)

But on the way to the view, it is unpacked, and the following variables are created in
the view to correspond to each key/value pair in the array:

 $css = 'mystyles.css';
 $base = 'http://127.0.0.1/packt';
 $mytitle = 'Welcome to this site';
 $mytext = 'Hello, fred, now we're getting dynamic!';
)

Although you can only pass one variable to a view, you can pack a lot of information
into that one variable. Each value in the $data array can itself be another array,
and so on, so you can pass pieces of information to the view in a tightly
structured manner.

Now navigate to http://127.0.0.1/packt/index.php/index/start/fred (note
that the URL is different—it is looking for the start function we wrote in the index
controller) and you'll see the result: a dynamic page written using MVC architecture.
(Well, VC at least! We haven't really used the M yet.)

Chapter 3

[43]

Here's what it should look like now:

You can see (at least I hope you can!) that the parameter fred is the last segment of
the URL. It has been passed into the function, and then through to the view.

Please remember that your view must be written in parallel with your controller.
If the view does not expect and make a place for a variable, it won't be displayed.
If the view is expecting a variable to be set and it isn't, you are likely to get an error
message. (Your view can of course accept variables conditionally.)

How CI Classes Pass Information and
Control to Each Other
As you write your controllers, models, etc., you will need to pass control and data
between them. Let's look at some of the ways in which we can do this.

Calling Views
We have seen how the controller calls a view and passes data to it:

First it creates an array of data ($data) to pass to the view; then it loads and calls the
view in the same expression:

	 $this->load->view('testview', $data);

Calling Functions Directly
If you want to use code from libraries, models, plug-ins, or helpers, of course, you
have to load them first, and then call them as described in the previous table. So, if
'display' is a model and I want to use its mainpage function, my controller might call:

$this->display->mainpage();

If the function requires parameters, we can pass them to the function like this:

$this->display->mainpage('parameter1', $parameter2);

Navigating Your Site

[44]

Interacting with Controllers
You can call libraries, models, plug-ins, or helpers from within any controller, and
models and libraries can also call each other as well as plug-ins and helpers.

However, you can't call one controller from another, or call a controller from a
model or library. There are only two ways that a model or a library can refer back to
a controller:

Firstly, it can return data. If the controller assigns a value like this:

$fred = $this->mymodel->myfunction();

and the function is set to return a value, then that value will be passed to the variable
$fred inside the controller.

Secondly, your model or library can create (and send to a view) a URL, which
allows a human user to call the controller functions. Controllers are there to receive
human interactions.

You can't, of course, hyperlink directly to a model or library. Users always talk
to controllers, never to anything else—but you can write a calling function in
the controller. In other words, your view might contain a hyperlink to a
controller function:

echo anchor(start/callmodel, Do something with a model);

but the callmodel function would exit only to call a function in the model:

 ��������������������� 	 function callmodel()

{
 $this->load->model(mymodel);
 $this->mymodel->myfunction();
}

Chapter 3

[45]

It's Just Like an Egg-Cup

humans

controllers

models and
libraries

views

This diagram shows the different ways in which components can address each other.

Unbroken lines represent direct function calls such as:

$this->mymodel->myfunction();

These can take place from controllers to views, and from controllers to libraries or
models. (Models can also call views, but probably shouldn't.) They can't take place in
reverse: views etc. can't call controllers. However, libraries and models can call each
other and be called by each other.

Broken lines represent passing information by returning values. Models and libraries
can do this to controllers, or to each other. Views don't return values.

The dotted lines represent passing information or control via a human user—in other
words, the view will show the user something on the screen and may invite the user
to click on a hyperlink (which sets off a controller).

Any resemblance to an egg-cup is purely coincidental. It just came out that way.

Navigating Your Site

[46]

An Example of a CI Helper: the URL Helper
As an example of the way you can split your code up into neat, focussed, chunks,
CI's URL helper contains a set of functions that help you to manipulate URLs. You
load it like this:

this->load->helper('url');

And then, you can use it to find and return the site and/or base URLs that you set in
your config file:

echo site_url();
echo base_url();

You can also use it to create hyperlinks. We saw in the last section how you can
access the hello function in the start controller, and pass it the parameter fred,�
with a URL like:

http://www.mysite.com/index.php/start/hello/fred

If you want your own code to create a hyperlink to a URL like this, you can use the
URL helper to do it. The syntax is:

echo anchor(start/hello/fred, Say hello to Fred);

This generates a hyperlink to the same URL, and displays the words Say hello to
Fred to the user to be clicked on. In other words, it's the equivalent of:

say hello
to Fred�

Remember, there are two advantages to using the CI helper. Firstly, less typing
(49 characters as opposed to 82, both including spaces. If you include loading
the URL helper—another 27 characters, which you only have to do once per
controller—it still comes to 76 rather than 82.)

Secondly, the URL helper automatically looks up the site URL in the config files
(and the index file name). This means that if you change your site location, you only
need to alter the config file once, you don't have to hunt through your code for
hyperlinks that don't work any more.

The URL helper has other useful functions. For instance, it can create a
'mailto' hyperlink.

echo mailto('me@example.com', 'Click Here to Email Me');

has the same effect as typing this HTML:

click here to email me

Chapter 3

[47]

If you are worried about robots harvesting the email addresses from your website
and using them for spamming, change mailto in the CI code to safe_mailto. What
appears on your viewer's screen is exactly the same, and works the same way.

However, if you examine the actual HTML code, this has now become a complex
heap of JavaScript, which the robot cannot (easily) read:

<script type="text/javascript">
//<![CDATA[
var l=new Array();
l[0]='>';l[1]='a';l[2]='/
';l[3]='<';l[4]='|101';l[5]='|109';l[6]='|32';l[7]='|108';l[8]='|105'
;l[9]='|97';l[10]='|109';l[11]='|101';l[12]='|32';l[13]='|111';l[14]=
'|116';l[15]='|32';l[16]='|101';l[17]='|114';l[18]='|101';l[19]='|72'
;l[20]='|32';l[21]='|107';l[22]='|99';l[23]='|105';l[24]='|108';l[25]
='|67';l[26]='>';l[27]='"';l[28]='|109';l[29]='|111';l[30]='|99';l[31
]='|46';l[32]='|101';l[33]='|108';l[34]='|112';l[35]='|109';l[36]='|9
7';l[37]='|120';l[38]='|101';l[39]='|64';l[40]='|101';l[41]='|109';l
[42]=':';l[43]='o';l[44]='t';l[45]='l';l[46]='i';l[47]='a';l[48]='m'
;l[49]='"';l[50]='=';l[51]='f';l[52]='e';l[53]='r';l[54]='h';l[55]='
';l[56]='a';l[57]='<';
for (var i = l.length-1; i >= 0; i=i-1){
if (l[i].substring(0, 1) == '|') document.write("&#"+unescape(l[i].
substring(1))+";");
else document.write(unescape(l[i]));}
//]]>
</script>

You, and your users, need never see this code. It's only there to confuse the robots
and keep your email addresses safe from spam. You put it there by adding four
letters and an underscore: you wrote safe_mailto instead of mailto, and CI did
the rest.

There are several other useful functions in the URL helper. See the User Guide for
more about them and how to use them.

Just consider the URL helper as a whole. Let's go back to the touchstones for coding
we discussed earlier in this chapter:

This code has high 'component singularity'. It does a limited range of things,
and it's clear what they are.
It is 'loosely coupled'—it has a simple interface and no other dependency on
any code that's calling it. You can use the URL helper in any CI project you're
writing. Most of your projects will need some sort of hyperlinks, for instance.
You can use this helper over and over again to create them.

•

•

Navigating Your Site

[48]

If you look at the URL helper's code (in system/application/helpers/
url_helper.php) you'll see that it is procedural code—that is, it is simply a set of
functions, not an OO class. It doesn't load any other CI classes or helpers. (Not
being an object, it can't do this.)

A Simple Library Example: Creating a Menu
Now let's look at some code that does use the CI classes.

For instance, here is a simple library file that creates a menu with three choices:

1 <?php
2 class Menu{
3 function show_menu()
4	 {
5	 $obj =& get_instance();	
6	 $obj->load->helper('url');
7	 $menu	 = anchor("start/hello/fred","Say hello to Fred |");
8	 $menu	 .= anchor("start/hello/bert","Say hello to Bert |");
9	 $menu	 .= anchor("start/another_function","Do something else |");
10	 return $menu;
11	 }
12 }
13 ?>

(For the moment, don't worry about the unusual syntax—$obj-> rather than
$this-> in line 6. This is exaplained in Chapter 7.)

Note that this code is now OO code, in which the function show_menu() is contained
in a single class, 'Menu'. It can access other CI classes and helpers: in this case it is
using the URL helper, which we just examined.

Firstly, it loads the URL helper, and then it creates a string ($menu), consisting of
HTML code for hyperlinks to the three controllers and functions specified to it. Then
it returns the $menu string.

You might call it from a controller like this:

$mymenu = $this->menu->show_menu();

and then the controller can use the $menu variable to call a view:

	 $data['menu']	= $mymenu;
	 $this->load->view('myview', $data);

Chapter 3

[49]

This class produces a menu, which is site-specific. For this reason, I would save it in
the /system/application/libraries, rather than the system/libraries, folder.
It's not as loosely coupled as the URL helper, which I can use on any site.

It does have high singularity: it creates a menu, and that's all it does. I can call it
from any controller in my site and know that it will show the standard menu in
my models.

Summary
The MVC framework is a widely used and very effective way of organizing a
complex website. CI uses it to help you sort out your own code, but it is also fairly
flexible about how it does so.

Try to keep in mind the two principles of 'loose coupling' and 'component
singularity' when you write your own code. Don't worry too much whether your
application conforms to the strict theory of MVC or not. The crucial thing is to
understand what the different types of file are, and how they relate to each other.
Then, you can decide whether to write your own code in library or model files, or as
helpers or plug-ins.

We've looked at the CI file structure, and seen how you can, if you want, inspect all
the CI code, but (thankfully!) you don't have to.

We did tinker with one of the original files: the config file, which holds critical site
information in one place to make it easier for us to upgrade or change later on.

We've seen the basic object structure of a controller, and used a simple constructor
to get some data from our config file and put it into a class property. And we've
dynamically passed information from a new controller we wrote, to a new view. So
far, the main thing CI has done for us is to encourage us to use a basic structure as
we start to define our site. As we go on, it will become clear just how important that
structure is.

Also, we looked a the way that CI's components pass data and control between
themselves. It's useful to understand this when you start to write your code.

Lastly, we looked at CI's own URL helper as a good example of a chunk of code, and
we wrote our own rudimentary 'menu' library class.

Using CI to Simplify
Databases

You're looking at CI because you want to make coding easier and more productive.
This chapter is about CI's Active Record class. If CI offered nothing more than its
Active Record class, it would still be worth every penny of the purchase price.
All right, it's free. I'll rephrase that—it would still be a major tool to increase
your productivity.

Active Record allows you to handle databases with a minimum of fuss and a
maximum of clarity. It's simple to use and maintain.

This chapter looks at how you set up a database to work with CI, and then how you
use the Active Record class to manipulate the database. You'll see:

How Active Record code compares with 'classic' PHP/ MySQL
interface code
How to write 'read' queries, and display the results
How to do create, update, and delete queries

CI allows you to write queries in the traditional 'classic' PHP style as well, but I won't
go into detail on that. It's fully covered in the online User Guide. I started off doing it
the old way, but once I tried Active Record, I never looked back.

Configuration Settings
You have probably noticed that most chapters in this book keep going back to the
system/application/config folder and the configuration files inside it. These are
pretty essential for controlling the way CI works. And while you can leave most of
them safely set at the defaults, the database config file does need tweaking before
anything will work at all.

•

•
•

Using CI to Simplify Databases

[52]

Basically, you just have to tell it where your database is, and what type it is. The
default file simply says:

$active_group = "default";
$db['default']['hostname'] = "";
$db['default']['username'] = "";
$db['default']['password'] = "";
$db['default']['database'] = "";
$db['default']['dbdriver'] = "";

along with a few other options that you can leave at the default, for now. The options
you must fill in are:

hostname: The location of your database, e.g., 'localhost' or an IP address
username and password: The username and password of a database user
with sufficient permissions to do whatever you may want your site to do.
This is not (usually) the same username and password as your site or your
ISP's control panel.
database: The name of your database, e.g., 'websites'
dbdriver: The type of database you're using—at the time of writing, the
options CI offers were MySQL, MySQLi, Postgre SQL, ODBC, and MS SQL.

In my experience, one of the most difficult things to set up on a new CI site can be
the link to the database. You may need to consult your ISP if in doubt—sometimes
their database runs at a different address to their web servers. If you are using
MySQL, they may offer phpMyAdmin, which usually tells you the hostname—this
may be 'localhost' or it may be an IP address.

You'll note that this part of the config file is actually a multi-dimensional array.
Within $db is an array called default, and you're adding key/variable pairs like
hostname = 127.0.0.1 to that array. This is so that you can set up other databases,
as other secondary arrays, and swap between them easily by simply changing the
$active_group setting to the name of another array.

This makes it possible to run a site with several database options—for instance, a
test database and a production database—and to swap between them easily. Or you
might need to draw information from two separate databases.

Designing the Database for Our Site
I want to show that CI can be used to develop a serious website with a serious
purpose. I am currently running several websites for clients, and I want a program
that will monitor them, test them in ways I specify, keep a database of what it has

•

•

•

•

Chapter 4

[53]

done, and let me have reports when I want them. So let's try to build it. Firstly let's
set some objectives. These are:

1.	 To manage one or more remote websites with a minimum of
human intervention

2.	 To run regular tests on the remote sites
3.	 To generate reports on demand, giving details of the site and of

tests conducted

So, the first thing we will need is a database of websites to check. Set up a database
called websites in MySQL or whatever RDBMS you're using.

Now, we need to add some tables to hold various types of data. Let's add to our
websites database a table for sites, which includes fields for their URLs, their names
and password/usernames, and their types. We'll also include an id field for each
site—and in MySQL at least, which can be set to generate a unique new ID for each
entry, using the auto-increment field type.

Each site may be hosted with a different host, or host machine, and we need another
hosts table to store data about this. It most probably has a domain associated with
it, so we need a domains table to keep track of data about the domain, like when it's
due for renewal, the registrar, and our username/password on the registrar site.
Then of course, we have those tiresome people, clients, some of whom may own
more than one site, so we need a separate people table in which to store their names,
email addresses, snail mail addresses, mobile numbers, plus pet's names, and all the
other stuff so vital to good CRM.

So our site table needs to include fields for a domain ID, a host ID, and perhaps a
couple of people IDs, one for the site owner or client and one for the site manager.
(That's you, or one of the staff you'll have to hire to keep pace when this app hits
the market.)

As you can see, this is a full relational database, and we've only just started! (Fuller
details of this database are set out as an appendix to this chapter, in the form of a
MySQL query, if you want to set one up yourself.)

We're going to want a simple flexible way of accessing all this. So, let's turn to what
CI can offer, and in particular to its Active Record class.

Active Record
'Active Record' is a 'design pattern'—another of those highly abstract systems like
MVC, which provide templates for solving common coding problems and also
generate some of the dullest books on the planet. In itself, it isn't code, just a pattern

Using CI to Simplify Databases

[54]

for code. There are several different interpretations of it. At its core is the creation
of a relationship between your database and an object, every time you do a query.
Typically, each table is a class, and each single row becomes an object. All the things
you might want to do with a table row—create it, read it, update it, or delete it,
for example—become 'methods', which that object inherits from its class. Ruby on
Rails is built around the Active Record pattern, and so is CI—although the exact
implementation in the two frameworks seems to have subtle differences.

Enough theory—what does it mean? Well, simple and clear code statements, if you
don't mind putting arrows in them.

Advantages of Using the Active Record Class
Active record saves you time, brings in automatic functionality that you don't have
to think about, and makes SQL statements easy to understand.

Saving Time
When you write a normal database query in PHP, you must write a connection to
the database each time. With CI, you connect once to the database, by putting the
following line in the constructor function of each controller or model:

$this->load->database();

Once you've done this, you don't have to repeat the connection, how many ever
queries you then make in that controller or model.

You set up the database details in the config files as we saw earlier in this chapter.
Once again, this makes it easier to update your site, if you ever change the database
name, password, or location.

Automatic Functionality
Once you've connected to the database, CI's active record syntax brings hidden code
with it. For instance, if you enter the following 'insert' query:

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);
$this->db->insert('mytable', $data);

the values you are inserting have been escaped behind the scenes by this code:

function escape($str)
{

Chapter 4

[55]

 switch (gettype($str))
 {case 'string':
 $str = "'".$this->escape_str($str)."'";
 break;
 case 'boolean': $str = ($str === FALSE) ? 0 : 1;
 break;
 default : $str = ($str === NULL) ? 'NULL' : $str;
 break;
 }
return $str;
}

In other words, the CI framework is making your code more robust. Now, let's look
at how it works.

Firstly, connecting to the database is very simple. In classic PHP, you might say
something like this:

 $connection = mysql_connect("localhost","fred","12345");
 mysql_select_db("websites", $connection);
 $result = mysql_query ("SELECT * FROM sites", $connection);
 while ($row = mysql_fetch_array($result, MYSQL_NUM))
 {
 foreach ($row as $attribute)
 print "{$attribute[1]} ";
	 }

In other words, you have to re-state the host, username, and password, make a
connection, then select the database from that connection. You have to do this each
time. Only then, do you get on to the actual query. CI replaces the connection stuff
with one line:

$this->load->database();

which you put once, in each controller or model or class constructor that you write.
After that, in each function within those controllers, etc., you just go straight into
your query. The connection information is stored in your database config file, and
CI goes and looks it up there each time.

So, in each CI function, you go straight to your query. The query above written in CI
comes out as:

$query = $this->db->get('sites');
 foreach ($query->result() as $row)
 {
 print $row->url
 }

Using CI to Simplify Databases

[56]

Simple, isn't it?

The rest of this chapter sets out ways of making different queries, making them
more specific.

Read Queries
The most common query that we'll write simply retrieves information from the
database according to our criteria. The basic instruction to perform a read query is:

$query = $this->db->get('sites');

This is a 'SELECT *' query on the sites table—in other words, it retrieves all the
fields. If you prefer to specify the target table (sites) in a separate line, you can do
so in this way:

$this->db->from('sites');
$query = $this->db->get();

If you want to 'SELECT' or limit the number of fields retrieved, rather than get them
all, use this instruction:�

$this->db->select('url','name','clientid');
$query = $this->db->get('sites');

You may want to present the results in a particular order—say by the site name—in
which case you insert (before the $this->db->get line):�

$this->db->orderby("name", "desc");

desc means in descending order. You can also choose asc (ascending) or
rand (random).

You may also want to limit the number of results your query displays; say you want
only the first five results. In this case insert:

$this->db->limit(5);

Of course, in most queries, you're not likely to ask for every record in the table. The
power of databases depends on their ability to select—to pick out the one piece of
data you want from the piles of stuff you don't. This is usually done by a where
statement that CI expresses in this way:

$this->db->where('clientid', '1');

This statement would find all websites linked to the client whose ID was 1. But that's
not much help to us. We don't want to remember all the ID's in our people table.
As humans, we prefer to remember human names. So we need to link in the
people table:

Chapter 4

[57]

$this->db->from('sites');
$this->db->join('people', 'sites.peopleid = people.id');

For each people ID in the sites table, look up the information against that ID in the
people table as well.

Note the SQL convention that if a field name may be ambiguous between
two tables, you reference it with the table name first, then a period, then
the field name. So sites.peopleid means the peopleid field in the
sites table. In fact, there isn't a field called peopleid in both tables,
but there is an id field in both sites and people, so the RDBMS will
protest if you try to run the query without resolving the ambiguity for it.
In any case, it's a good habit to make your meaning explicit, and CI syntax
happily accepts the fuller names.

You can play around with the syntax of where statements. For instance, add
negation operators:

$this->db->where('url !=','www.mysite.com');

or comparison operators:

$this->db->where('id >','3');

or combine statements ("WHERE… AND…"):

$this->db->where('url !=','www.mysite.com');
$this->db->where('id >', '3');

or use $this->db->orwhere() to search for alternatives ("WHERE … OR"):

$this->db->where('url !=','www.mysite.com');
$this->db->orwhere('url !=','www.anothersite.com');

So let's say we've built up a query like this:

$this->db->select('url','name','clientid','people.surname AS client');
$this->db->where('clientid', '3');
$this->db->limit(5);
$this->db->from('sites');
$this->db->join('people', 'sites.clientid = people.id');
$this->db->orderby("name", "desc");
$query = $this->db->get();

This should give us the first five (ordered by name) websites belonging to client
number 3, and fetch the client's surname as well as his or her ID number!

Using CI to Simplify Databases

[58]

A hidden benefit of using Active Record is that data that may have come in from
users is automatically escaped, so you don't have to worry about putting quotes
around it. This applies to functions like $this->db->where(), and also to the data
creation and update statements described in the next sections. (Security warning: this
is not the same thing as preventing cross-scripting attacks—for that you need CI's
xss_clean() function. It's also not the same as validating your data—for this you
need CI's validation class. See Chapter 5.)

Displaying Query Results
Showing database query results in CI is quite simple. We define our query as above,
ending in:

$query = $this->db->get();

Then, if there are multiple results, they can be returned as a $row object through
which you iterate with a foreach loop:

foreach ($query->result() as $row)
{
 print $row->url;
 print $row->name;
 print $row->client;
}

or if we only want a single result, it can be returned as an object, or here as a
$row array:

if ($query->num_rows() > 0)
{
 $row = $query->row_array();

 print $row['url'];
 print $row['name'];
 print $row['client'];
}

Personally, I prefer the object syntax to the array—less typing!

When you follow the MVC pattern, you will usually want to keep your queries and
database interactions in models, and display the information through views.

Chapter 4

[59]

Create and Update Queries
Active Record has three functions that help you create new entries in your database.
They are $this->db->insert(), $this->db->update(), and $this->db->set().

The difference between a 'create' and an 'update' query is that when you create a new
record, there is no reference to any existing record, you are writing a new one. When
you update, there is an existing record, and you are changing it. So in the second
case, you have to specify which record you are changing. In both cases, you have to
set the values you want to leave in the database after your query. Values you don't
set will be left unaltered—or, if they didn't exist before, they will still be 'null' after
your query.

CI allows you to set your values either with an array, or with $this->db-set(); the
difference is only one of syntax.

So, let's add a line to our sites table in the websites database. We've already
connected to this database in our controller. The controller's constructor function
included the line:

$this->load->database();

We want to add a new site, which has a URL, a name, a type, and a client ID number.
As an array, this might be:

$data = array(
 'url' => 'www.mynewclient.com',
 'name' => 'BigCo Inc',
 'clientid' => '33',
 'type' => 'dynamic'

);

To add that to the sites table, we follow it with:

$this->db->insert('sites', $data);

Alternatively, we could set each value using $this->db->set():

$this->db->set('url', 'www.mynewclinet.com');
$this->db->set('name', 'BigCo Inc');
$this->db->set('clientid', '33');
$this->db->set('type', 'dynamic');
$this->db->insert('sites');

If we are updating an existing record, then again we can either create an array, or use
$this->db->set(). But there are two differences.

Using CI to Simplify Databases

[60]

Firstly, we have to specify the record we want to update; and second, we need to
use $this->db->update(). If I want to update a record (say the record with its 'id'
field set to 1) in my sites table, using the data set out in my $data array above, the
syntax is:

$this->db->where('id', '1');
$this->db->update('sites', $data);

Or I can set out the information using $this->db->set(), as above.

CI gives you several functions to check what the database has done. Most usefully:
$this->db->affected_rows();

should return '1' after my insert or update statement—but might show more rows
if I was altering several rows of data at one time. You can use it to check that the
operation has done what you expected.

You've noticed that I didn't set an ID field when I created a new record. That's
because we set the database to populate the ID field automatically when a new
record is added. But I do have to specify an ID when I update an existing record,
otherwise the database doesn't know which one to alter.

If I'm generating a new record, however, I don't know the ID number until I've
generated it. If I then need to refer to the new record, I can get the new ID
number with:

$new_id_number = $this->db->insert_id();

(This code has to go, as soon as possible, after the operation that generated the
record, or it may give a misleading result.)

For a little more peace of mind, remember that CI Active Record functions, including
$this->db->insert() and $this->db->update() automatically escape data
passed to them as input.

From version 1.5, CI also includes support for transactions—linking two or more
database actions together so that they either all succeed, or all fail. This is essential
in double-entry book-keeping applications and many commercial sites. For instance,
say you are selling theatre tickets. You record receiving a payment in one transaction,
and then allocate a seat to the customer in another. If your system fails after doing
the first database operation, but before doing the second, you may end up with an
angry customer—who has been charged, but has not had a seat reserved.

CI now makes it much simpler to link two or more database operations into one
transaction, so that if they all succeed, the transaction is 'committed', and if one or
more fails, the transaction is 'rolled back'. We don't need to use this in our example
site, but if you want more information see the CI online User Guide.

Chapter 4

[61]

Delete Queries
Delete queries are perhaps the simplest to describe. All you need is the name of the
table and the ID number of the record to delete. Let's say I want to delete record in
my sites table with the ID number 2:

$this->db->where('id', '2');
$this->db->delete('sites');

I get slightly nervous around 'delete' queries because they are so powerful. Please
remember to make sure that there is a valid value in the 'where' clause, or you may
delete your whole table! Neither the author nor Packt Publishing will accept any
liability if….

Mixing Active Record and 'Classic' Styles
CI doesn't insist that you use Active Record. You can also use CI to issue straight
SQL queries. For instance, assuming you loaded the database in your constructor,
you can still write queries like this:

$this->db->query("SELECT id, name, url FROM sites WHERE 'type' =
'dynamic'");

Personally, I find Active Record easier to use. Conceptually, setting out my query
in an array makes it easier to see and manipulate as an entity than writing it in SQL
syntax. It's slightly more verbose, but clearly structured; it automatically escapes
data; and it may be more portable. It also minimizes typing errors with commas
and quotes.

There are a few cases, however, where you may have to resort to the original SQL.
You might want to do complex joins, or another example is if you need to use
multiple 'where' conditions. If you want to find the websites associated with client 3,
but only those of two specific types, you may need to put brackets around the SQL to
make sure the query is correctly interpreted.

In cases like these, you can always write out the SQL as a string, put it in a variable,
and use the variable in CI's $this->db->where() function, as follows:

$condition = "client ='3' AND (type ='dynamic' OR type='static')";
$this->db->where($condition);.

Without the brackets this is ambiguous. Do you mean:

(client='3' AND type = 'dynamic') OR type = 'static'

or

client='3' AND (type = 'dynamic' OR type = 'static')

Using CI to Simplify Databases

[62]

Well, yes of course, it's obvious, but the machine usually guesses wrong.
Incidentally, be careful with the syntax of $condition. The actual SQL query is:

client='3' AND (type = 'dynamic' OR type = 'static')

The double quotes come from the variable assignment:

$condition = " ";

It's easy to get your single and double quotes confused.

Some of the CI expressions I've quoted above, like $this->db->affected_rows(),
are not a part of its Active Record model. But they can be mixed in easily.

The only time you might run into problems is if you try to mix Active Record and
straight SQL in the same query. (I haven't tried this. If you have a lot of time on your
hands, you could test it out, but frankly, I think that would indicate a sad lifestyle.
Try train-spotting instead. At least it gets you out into the fresh air! I use CI because
I'm too busy not to!)

Summary
We've looked at CI's Active Record class and seen how easy it is to:

Set up connections to one or more databases
Do standard SQL read, update, create, and delete queries
Perform other functions that we need, to use a database properly

CI's Active Record function is clean and easy to use, and makes coding much clearer
to read. It automates database connections, allowing you to abstract the connection
information to one config file.

It can do pretty well anything that you can do with 'classic' SQL—more than I have
space to explain here. See the online User Guide for fuller details.

•

•

•

Chapter 4

[63]

Chapter Appendix: MYSQL Query to Set
Up 'websites' Database

DROP TABLE IF EXISTS `ci_sessions`;
CREATE TABLE IF NOT EXISTS `ci_sessions` (
 `session_id` varchar(40) NOT NULL default '0',
 `peopleid` int(11) NOT NULL,
 `ip_address` varchar(16) NOT NULL default '0',
 `user_agent` varchar(50) NOT NULL,
 `last_activity` int(10) unsigned NOT NULL default '0',
 `left` int(11) NOT NULL,
 `name` varchar(25) NOT NULL,
 `status` tinyint(4) NOT NULL default '0'
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `domains`;
CREATE TABLE IF NOT EXISTS `domains` (
 `id` int(10) NOT NULL auto_increment,
 `url` varchar(100) NOT NULL,
 `name` varchar(100) NOT NULL,
 `registrar` varchar(100) NOT NULL,
 `dateregd` int(11) NOT NULL default '0',
 `cost` float NOT NULL default '0',
 `regdfor` int(11) NOT NULL default '0',
 `notes` blob NOT NULL,
 `pw` varchar(25) NOT NULL,
 `un` varchar(25) NOT NULL,
 `lastupdate` int(11) NOT NULL default '0',
 `submit` varchar(25) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=10 ;

DROP TABLE IF EXISTS `events`;
CREATE TABLE IF NOT EXISTS `events` (
 `id` int(10) NOT NULL auto_increment,
 `name` varchar(50) NOT NULL default 'not set',
 `type` enum('test','alert','report') NOT NULL,
 `testid` int(10) NOT NULL,
 `siteid` int(10) NOT NULL,
 `userid` int(10) NOT NULL,
 `reported` int(11) NOT NULL,
 `result` blob NOT NULL,
 `time` int(11) NOT NULL,

Using CI to Simplify Databases

[64]

 `timetaken` float NOT NULL,
 `isalert` varchar(2) NOT NULL,
 `emailid` int(11) NOT NULL,
 `submit` varchar(25) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=69 ;

DROP TABLE IF EXISTS `frequencies`;
CREATE TABLE IF NOT EXISTS `frequencies` (
 `id` int(10) NOT NULL,
 `name` varchar(16) NOT NULL,
 `submit` varchar(25) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

DROP TABLE IF EXISTS `hosts`;
CREATE TABLE IF NOT EXISTS `hosts` (
 `id` int(11) NOT NULL auto_increment,
 `cost` float NOT NULL,
 `name` varchar(100) NOT NULL,
 `hosturl` varchar(100) NOT NULL,
 `un` varchar(50) NOT NULL,
 `pw` varchar(50) NOT NULL,
 `ns1url` varchar(36) NOT NULL,
 `ns1ip` varchar(36) NOT NULL,
 `ns2url` varchar(36) NOT NULL,
 `ns2ip` varchar(36) NOT NULL,
 `ftpurl` varchar(100) NOT NULL,
 `ftpserverip` varchar(36) NOT NULL,
 `ftpun` varchar(50) NOT NULL,
 `ftppw` varchar(50) NOT NULL,
 `cpurl` varchar(36) NOT NULL,
 `cpun` varchar(36) NOT NULL,
 `cppw` varchar(36) NOT NULL,
 `pop3server` varchar(36) NOT NULL,
 `servicetel` varchar(50) NOT NULL,
 `servicetel2` varchar(50) NOT NULL,
 `serviceemail` varchar(100) NOT NULL,
 `webroot` varchar(48) NOT NULL,
 `absoluteroot` varchar(48) NOT NULL,
 `cgiroot` varchar(48) NOT NULL,
 `booked` int(11) NOT NULL,
 `duration` int(11) NOT NULL,
 `lastupdate` int(11) NOT NULL default '0',

Chapter 4

[65]

 `submit` varchar(25) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=6 ;

DROP TABLE IF EXISTS `people`;
CREATE TABLE IF NOT EXISTS `people` (
 `id` int(11) NOT NULL auto_increment,
 `uname` varchar(25) NOT NULL,
 `pw` varchar(25) NOT NULL,
 `status` smallint(3) NOT NULL default '1',
 `name` varchar(50) NOT NULL,
 `firstname` varchar(50) NOT NULL,
 `surname` varchar(50) NOT NULL,
 `email` varchar(120) NOT NULL,
 `lastupdate` int(11) NOT NULL default '0',
 `submit` varchar(25) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=5 ;

DROP TABLE IF EXISTS `sites`;
CREATE TABLE IF NOT EXISTS `sites` (
 `id` int(10) NOT NULL auto_increment,
 `name` varchar(100) NOT NULL,
 `url` varchar(100) NOT NULL,
 `un` varchar(50) NOT NULL,
 `pw` varchar(50) NOT NULL,
 `client1` int(10) NOT NULL default '0',
 `client2` int(10) NOT NULL default '0',
 `admin1` int(10) NOT NULL default '0',
 `admin2` int(10) NOT NULL default '0',
 `domainid` int(10) NOT NULL default '0',
 `hostid` int(10) NOT NULL default '0',
 `webroot` varchar(50) NOT NULL,
 `files` text NOT NULL,
 `filesdate` int(11) NOT NULL default '0',
 `lastupdate` int(11) NOT NULL default '0',
 `submit` varchar(25) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=15 ;

DROP TABLE IF EXISTS `tests`;
CREATE TABLE IF NOT EXISTS `tests` (
 `id` int(11) NOT NULL auto_increment,
 `siteid` int(11) NOT NULL default '0',

Using CI to Simplify Databases

[66]

 `name` varchar(250) NOT NULL,
 `type` varchar(25) NOT NULL,
 `url` varchar(120) NOT NULL,
 `regex` varchar(250) NOT NULL,
 `p1` varchar(250) NOT NULL,
 `p2` varchar(250) NOT NULL,
 `p3` varchar(250) NOT NULL,
 `p4` varchar(250) NOT NULL,
 `p5` varchar(250) NOT NULL,
 `p6` varchar(250) NOT NULL,
 `frequency` int(10) NOT NULL default '0',
 `lastdone` int(10) NOT NULL default '0',
 `isalert` varchar(2) NOT NULL,
 `setup` int(10) NOT NULL default '0',
 `lastupdate` int(10) NOT NULL default '0',
 `notes` varchar(250) NOT NULL,
 `submit` varchar(25) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=11 ;

DROP TABLE IF EXISTS `types`;
CREATE TABLE IF NOT EXISTS `types` (
 `id` varchar(7) NOT NULL,
 `name` varchar(50) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Simplifying HTML Pages
and Forms

This chapter covers yet another way in which CI helps save your time and make
your coding more rigorous and logical.

Firstly, we'll cover various ways of building views—the pages that control how you
see the results prepared by your controllers and models.

Next, you'll see how to create HTML forms quickly, and with built-in safeguards;
and you'll also see how to validate your forms.

I'm assuming that readers of this book are familiar with HTML and CSS. The
following examples are very simplified, so we can focus on the CI code. And I have
assumed that we have already written a CSS file and tucked it away somewhere
on our site.

Writing a View
Views control how the user sees your website. They make it easy for you to present a
consistent interface, and to change it if you need to. One of the advantages of MVC is
that you separate presentation from logic, keeping everything much cleaner.

So far, all we've done is to look at the very simple 'Welcome' view that installs out
of the box when you first load CI. (See Chapter 3.) Now let's look at how to make it
more elaborate.

A view is just a set of HTML shelves to hold your content. The shelves may be one
color or another; there may be lots of little ones, or just a few widely-spaced, elegant
ones. But the view doesn't know or care what data is on those shelves. Like certain
politicians, it is only interested in presentation.

Simplifying HTML Pages and Forms

[68]

To create a view, firstly you need to create a skeleton HTML web page as a PHP file.
Let's call it basic_view.php. Save it in your application/views folder. (The reason
for saving it in this folder is simply because the loader file looks for it there.)

<html>
<head>
</head>
<body>
<p>Hello world!</p>
</body>
</html>

Then you just load it from a controller when you want to use it, using $this->load
->view() inside an appropriate function:

function index()
{
 $this->load->view('basic_view');
}

Note that if this were a model or a helper, you'd load it first, and then call it
separately when you wanted to use it. With a view, calling it loads it as well, so you
only need one line of code.

Of course, that's an empty view. To make it useful, we need content. Say we want to
add a title and some text. First we define them in the controller:

function index()
{
 $data['mytitle']	 = "A website monitoring tool";
 $data['mytext']	 = "This website helps you to keep track of the
 other websites you control.";	
}

Notice how we have defined them not as separate scalar variables, but as elements of
the array $data (or any other name we care to give it.). For the first array entry, the
'key' is 'mytitle' and the 'value' is "A website monitoring tool".

Next, we call the view loading function:�

function index()
 {
 $data['mytitle']	 = "A website monitoring tool";
 $data['mytext']	 = "This website helps you to keep track of the
 other websites you control.";	
 $this->load->view('basic_view', $data);
 }

Chapter 5

[69]

We have made the $data array into a second parameter of the
$this->load->view() function, after the name of the view itself. Once the
$data array reaches the view, CI uses PHP's extract() function to turn each
element of the $data array into a separate variable, with the 'key' as the variable
name, and the 'value' as the variable value. These variables can then be referenced
directly in our view:

<html>
<head>
</head>
<body>
 <h1 class='test'><?php echo $mytitle; ?> </h1>
 <p class='test'><?php echo $mytext; ?> </p>
</body>
</html>

You can only pass one variable of data to a view, but by building up an array of
arrays, you can pack large amounts of information neatly into that one variable. It
seems complicated, but is actually a tightly structured and elegant way of
passing information.

Long and Short PHP Syntax
Before we go on, a note about different forms of PHP syntax.

The normal way to include a PHP 'code island' in the midst of HTML code is
like this:

<?php echo $somevariable ?>

However, if you don't like this, CI also supports a shorter version:

<?=$somevariable?>

In this case, the external brackets delimiting the code island have lost the letters PHP
(they are just <? ?>); and echo has been replaced by =. You can also use shorter
syntax for if, for, foreach, and while loops. Complete instructions are in the online
User Guide.

Personally, I prefer to stick to the standard format because I'm used to it. If you
use the short format, note that some servers won't interpret the abbreviated format
correctly. If you still wish to use the short tags, then go to your config file, and alter
the line:

$config['rewrite_short_tags'] = FALSE;

Simplifying HTML Pages and Forms

[70]

to TRUE. CI will then rewrite short tags to the normal form before it sends them to
the server. However, if there is a PHP error, using this re-writing function makes
the error messages less meaningful, so debugging may be more difficult. As I say, I
prefer to stick to the standard format.

For the record, CI also has a 'template parser' class, which allows you to put variables
in your HTML code without any actual PHP coding at all. I haven't covered this. It
is largely useful if you are working with HTML designers who may be confused by
PHP code. Details of this class are available in the User Guide.

Nesting Views
So far, whether we use long or short PHP formats, this is pretty crude HTML.
It would be nice, for instance, to put more information in the <head> section of
the page. Better still if this could be a standard chunk of each page. Once again,
something we only have to write (or alter) once, and can then re-use, nesting this
view inside other views whenever we need the boring HTML header stuff.

Let's create a page header 'view' for our site, which displays a standard page header,
as well as HTML declarations and meta information.

First, we type out the code for our 'nested' header view:

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'><html xmlns='http://www.
w3.org/1999/xhtml'>
<title><?php echo $mywebtitle ?></title>
<base href= <?php echo "$base"; ?> �>
<?php echo $myrobots ?>
<link rel="stylesheet" type="text/css" href="<?php echo "$base/
$css;?>">

Save this as views/header_view. It introduces new variables:

$mywebtitle, which is the page title (the meta tag; this won't show up on the
screen, but search engines will read it. It may vary from page to page, so I've
made it a variable.)
$myrobots, which I'm using for the standard instruction to robots that this
site is not to be indexed.
$base and $css, which describe the base URL and the extra URL for our
.css file, the stylesheet we're pretending we've already written, which lets
us apply formatting consistently. These variables will be generated from data
we have already stored in the CI.config file. (I could also have used the CI
config variable site_url instead of base.)

•

•

•

Chapter 5

[71]

What we need to know now is:

How do we call the second 'nested' view?
How do we assign values to its variables?

There are two options. Firstly, calls to views can be made from within other views.
So our main view, basic_view, just needs a new line:

<html><head>
<?php $this->load->view('header_view'); ?>
</head><body>
<?php echo $mytitle; ?>
<?php echo $mytext; ?>
</body>
</html>

As for the variables, they can be assigned by two new lines in the original controller:

 function index()
 {
 $data['mytitle'] = "A website monitoring tool";
 $data['mytext'] = "This website helps you to keep track
 of the other websites you control.";	
 $data['myrobots'] = '<meta name="robots" content="noindex
 ,nofollow">';
 $data['mywebtitle'] = 'Web monitoring tool';	
 $data['base'] = $this->config->item('base_url');
 $data['css'] = $this->config->item('css');
 $this->load->view('basic_view', $data);
 }

Here the new variables $myrobots, $css, $base, and $mywebtitle are created as
new elements of the existing $data array, passed to basic_view, which unpacks
them, and then made available to header_view when this is called by basic_view.
(Just remember not to use the same variable name in two views that you are nesting,
or one will overwrite the other.)

A second way is to add the view from inside the controller, by assigning it to
a variable:

function index()
 {
 $data['mytitle'] = "A website monitoring tool";
 $data['mytext'] = "This website helps you to keep track of the
 other websites you control.";	
 $data['myrobots'] = '<meta name="robots" content="noindex,
 nofollow">';

•

•

Simplifying HTML Pages and Forms

[72]

 $data['mywebtitle'] = 'Web monitoring tool';	
 $data['base'] = $this->config->item('base_url');
 $data['css'] = $this->config->item('css');

$data['header'] = $this->load->view('header_view', '', TRUE);
 $this->load->view('basic_view', $data);
}

This is probably more correct from a strict MVC perspective.

There are actually three parameters you can pass with the load->view function.

The first, header_view, is the name of the view to be loaded. This is essential.
The second, which is optional, is the data to load into it.
The third is a Boolean value. If you don't specify it, this defaults to FALSE,
and the view is sent to the browser. However, if you are nesting the view
this way, you want it returned as a string to nest inside the variable you are
passing to the host view. Setting the third parameter to TRUE achieves this.

Now we've got a reference to the stylesheet built in, we can update the view to use
display classes that we might have defined there:

<html><head>
<?php $this->load->view('header_view'); ?>
</head><body>
 <h1 class='test'><?php echo $mytitle; ?> </h1>
 <p class='test'><?php echo $mytext; ?> </p>
</body>
</html>

Notice again how CI's MVC system allows you to separate display from content. The
views only provide 'shelves' for the content, and even the styling of those shelves is
derived from a .css stylesheet.

The view doesn't care what $mytext says, it just displays it on the right shelf with
the right formatting. The controller that defines $mytext doesn't even know (or care)
how the information it generates is displayed.

So, if we need to change the look of our pages, or display them on a different system
(say WAP), then we only need to change one view and one CSS stylesheet. We don't
need to mess around inside the code of several controllers.

And if we want to change the information displayed on the page, we don't need to
touch the views, and remind ourselves to change some variable in each page we've
written. We just change what the controller pushes out.

•

•

•

Chapter 5

[73]

Remember the 'loose coupling' principle? Once again, this makes it easier to design,
upgrade, and maintain your sites.

Practical Issues of Site Architecture
Wait a moment, you're saying in our header_view, we generated the CSS stylesheet
address dynamically:

<link rel="stylesheet" type="text/css" href="<?php echo "$base/
$css";?>">

This means that the controller had to produce this data, which is only relevant to
how the information is displayed, and we've just said the controller shouldn't know
or care about that. Isn't that going right in the face of the 'loose coupling' principle
that we had just set out? What's more, generating this information dynamically
requires several operations: First, the controller has to look it up in the config file,
then the controller has to package it in the $data array and pass it to the view, then
the view has to extract the single variables $base and $css and look up their values.

Seems like a roundabout way of doing things. Why not just embed the data statically
in the view?

<link rel="stylesheet" type="text/css" href="http://www.mysite.com/
mystylesheet.css";">

The advantage of building this variable dynamically, despite breaking the MVC
'rule', and despite the overhead of creating variables and passing them around, is
that the code is then much more portable. If you move the site, or move your CSS
file, you only have to change the code once in the config file, and every controller
and view will reflect the change at once. If you hard-code the address in to each
view, you'll have to spend time hunting through them for all those absolute URIs
you wrote months ago. So which is best?

There isn't a right answer. It depends on what your priorities are. The key is to apply
MVC principles sensibly—as a tool rather than a straitjacket. CI allows you a lot of
freedom to do this.

A third option—which I use—is to create a special 'display' model. This exists to
build the standard page. It puts in headers and CSS file references and so on, and it
accepts as a parameter the unique information the file will require. I'll show you this
later on in this chapter.

Simplifying HTML Pages and Forms

[74]

CI's Form Helper: Entering Data
Let's move on to how you use your HTML pages. One of the most important parts of
any dynamic site is interaction with the users, and this usually means HTML forms.
Writing forms is repetitive and boring.

The CI form helper is a very useful piece of code. It introduces a slightly different
syntax, which makes form creation easier. Let's build a form to allow ourselves to
enter data on our site about a new website. In a sites table, we want to enter the
name, type, and URL of the website, and the date it was updated.

You can build the form as a simple HTML file, or you can build it inside a controller,
pack it into a variable, then call a view, and pass the variable to the view. I'm doing
the second.

Firstly, we have to load the form helper into the controller where we need to use it.
Then, we put the following line in the controller's constructor function:

$this->load->helper('form');

and of course, we have to start the form.

Now, for the form fields, instead of typing:

$variable .= <input type='text'���������������������� name='name' value=''>

CI allows you to enter:

$variable .= form_input('name', '');

(Remember that 'name' is the title of the field, 'value' is what you want to go into
it. Putting something in here gives you a default value, or you can dynamically fetch
the existing value from the table.)

Hmm, you say. 33 characters instead of 48, not much of a saving, particularly as I
have to load the helper first (another 28 characters). Why bother? Well:

Form Helper Advantage One: Clarity
The first advantage of using the CI form helper is sheer clarity in your code. If you
want a more elaborate input box, then in HTML you'd type:

$variable = 'input type="text" name="url" id="url" value="www.mysite.
com" maxlength="100" size="50" style="yellow" />';

(Remember that type is the sort of box you want—text, hidden, whatever.

Chapter 5

[75]

name is the name that will be used as the key for this value in the POST array.

id is so that the box can be referenced on the page, if you're doing neat things with
JavaScript.

value is the existing or default value that you want the box to show when it comes
up on the page.

maxlength and size are obvious; style can be a set of HTML formatting or a
reference to a .css style defined in your stylesheet.)

CI uses an array instead:

$data = array(
 'name' => 'url',
 'id' => 'url',
 'value' => 'www.mysite.com',
 'maxlength' => '100',
 'size' => '50',
 'style' => 'yellow',
);

$variable = form_input($data);

It looks longer, and actually it is: 145 characters as opposed to 110 for the simple
HTML. However, it is much clearer, and easier to understand and maintain. This
becomes even more obvious if you start to generate some of the values dynamically.

Hidden form fields are very simple. Let's say we want to automatically record the
date that our database was updated. We put the date in a $date variable, then:

form_hidden('updated', $date);

If you want a 'text area' box, to give your user more than one line to enter data, say
for URLs, which may be quite long, use CI's form_textarea() function. If you're
happy with a default size, this would simply read:

$data = array(
 'name' => 'url',
 'id' => 'url',
 'value' => 'www.mysite.com',
);

$variable = form_textarea($data);

CI's form helper is a great help when you write dropdowns and checkboxes or radio
boxes. Let's say we want to change our 'url' field to a drop-down box, to allow the
reader to select one URL from a list of several. First, list the options in an array, then
use the form_dropdown() function:

Simplifying HTML Pages and Forms

[76]

$urlarray = array(
 '1' => 'www.this.com',
 '2' => 'www.that.com',
 '3' => 'www.theother.com',
);

$variable = form_dropdown('url', $urlarray, '1');

The first value passed to the form, url, is the field name in the site table which we
intend to update; the second is the array of options, the third is the key of the option
you want to set as default. In other words, if the user accepts the default value, your
$_POST array will contain the value 'url => 1', but your user will see the option
'www.this.com'.

Compare this to the plain vanilla HTML, you would otherwise have to write:

<select name="type">
<option value="1" selected>www.this.com</option>
<option value="2">www.that.com</option>
<option value="3" >www.theother.com</option>
</select>

Now CI's code is actually shorter (128 characters as opposed to 154), as well as much
easier to follow.

If you store your list of possible URLs in a separate database table (say it's called
'urls'), then generating a dynamic drop-down box is easy. First generate an array
of all possible values:

 $urlarray	 =	 array();
 $this->db->select('id, url');
 $query = $this->db->get('urls');
 if ($query->num_rows() > 0)
 {
 foreach ($query->result() as $row)
 {
 $urlarray[$row->id] = $row->url;
 }
 }

then repeat the CI form_dropdown() function we used before:

echo form_dropdown('type', $urlarray, '1');

Only the contents of $urlarray have changed; this line of code remains the same.

Chapter 5

[77]

If you are updating an entry rather than creating a new one, you don't want to show
your user a default value. You want to show the already existing value for that entry.
You should already know the id number of the entry you want to update, so you
need to do a database lookup of the 'sites' file first. Make sure you use a different
variable name for the second query and the second 'row' variable, or they may
overwrite the first set you wrote:

 $this->db->select('id, url, name');
$this->db->where('id','$id')

 $sitequery = $this->db->get('sites');
 $siterow = $sitequery->row();

Then your CI form drop-down function will read:

 echo form_dropdown('url', $urlarray, $siterow->url);

There isn't room here to go through all the options that the form helper offers. It can
handle checkboxes, hidden fields, radio boxes, and others. It is fully explained in CI's
online User Guide.

Form Helper Advantage Two: Automation
The second advantage of using the form helper to create your HTML forms is that it
automates some things you would otherwise have to script yourself.

Firstly, it intercepts �� HTML and characters such as quotes, which the user may enter,
and escapes them to stop them from breaking the form. �

Secondly, it automates links. When you open a form, you have to specify the target
page, which will receive the form data and process it. (In CI, this is a function within
a controller rather than an actual static page. Let's say the update ���������������� function of the
websites controller.) So, if you were using plain HTML code, you'd write:

<form method="post" action="http:/www.mysite.com/index.php/websites/
update" />

Whereas, if you open your form with CI, you only need to use:

form_open(websites/update)

CI automatically works out the base URL from the value in your config file and
points the form there. Once again, if you move your site, you won't find that your
forms are broken, and have to hunt through for hard-coded URLs to update.�

Simplifying HTML Pages and Forms

[78]

Note incidentally, that CI assumes your forms will always send POST data rather
than GET data. CI makes extensive use of the URLs itself, so this avoids confusion.

My 'Display' Model
As promised (and slightly simplified) here is my display model:

<?php
class Display extends Model {

/*create the array to pass to the views*/
 var $data = array();
/*two other class variables*/
 var $base;
 var $status = '';

/*the constructor function: this calls the 'model' parent class, loads
other CI libraries and helpers it requires, and dynamically sets
variables*/
 function Display()
 {
 parent::Model();
 $this->load->helper('form');
 $this->load->library('user_agent');
 $this->load->library('errors');	
 $this->load->library('menu');
 $this->load->library('session');

/*now set the standard parts of the array*/
 $this->data['css'] = $this->config->item('css');
 $this->data['base'] = $this->config->item('base_url');
 $this->base = $this->config->item('base_url');
 $this->data['myrobots'] = '<meta name="robots"
 content="noindex,nofollow">';
/*note that CI's session stuff doesn't automatically recall the extra
variables you have added, so you have to look up the user's status in
the ci_sessions table*/
 $sessionid = $this->session->userdata('session_id');
 $this->db->select('status');
 $this->db->where('session_id', $sessionid);
 $query = $this->db->get('ci_sessions');
 if ($query->num_rows() > 0)
 {
 	 $row = $query->row();
 $this->status = $row->status;
 }

Chapter 5

[79]

 }

/*function to assemble a standard page. Any controller can call this.
Just supply as $mydata an array, of key/value pairs for the contents
you want the view to display. Available variables in this view are:
mytitle. menu, mytext, diagnostic
*/
 function mainpage($mydata)
 {
 $this->data['mytitle'] = 'Monitoring website';
 $this->data['diagnostic'] = $diagnostic;
 foreach($mydata as $key => $variable)
 {$this->data[$key] = $variable;}
/*here's the menu class we looked at in Chapter 3*/
 $fred = new menu;
 $this->load->library('session');
 $mysess = $this->session->userdata('session_id');
 if(isset($this->status) && $this->status > 0)
 {$this->data['menu']=
 $fred->show_menu($this->status);}
 $this->load->view('basic_view', $this->data);

 }

}
?>

I can call the main page from any controller with the lines:

$this->load->model('display');
$this->display->mainpage($data);

and I then know that my view is being assembled dynamically, exactly as I want it.

CI's Validation Class: Checking Data
Easily
One chore when you write HTML forms is validating user input. We all know that
we should do it, but… So far we've written a simple form, which will trustingly
accept any data the user enters. You should always assume that a small minority of
your users are malicious, and all the others are stupid. (Just don't tell them.) If they
can make a simple mistake, they will. Validating your form tests the information
they submit, to make sure it fits rules you specify.

Simplifying HTML Pages and Forms

[80]

You can do it on the client side, using JavaScript but this is of limited value as a
security precaution, as the user can easily circumvent it. Validating the data on the
server side means an extra round trip to the server, but it's worth it for the added
peace of mind.

It's also quite complex to write the code, but—you guessed it—CI has a validation
class that works hand-in-glove with the forms helper to make validation easier.

Let's change our own form submission process to reflect this. You need to make
some changes in the form, and also in the function to which it points.

If your form begins with form_open('sites/update'), the function you need to
modify is the 'update' function in the 'sites' controller. If you aren't using the CI
form helper, the HTML equivalent is:

<form method="post"
action="http:/www.mysite.com/index.php/sites/update" />

You need to do three things:

1.	 Set up validation
2.	 Set up the controller
3.	 Set up the forms

Set Up Validation
In the function to which your form points, load the validation library and declare
your validation rules:

 $this->load->library('validation');

 $rules['url'] = "required";
 $rules['name'] = "required";

 $this->validation->set_rules($rules);

Each entry must have something in the 'url' and 'name' fields. CI gives us various
options for specifying what that something should be, and the User Guide explains
them in full. They're fairly self-evident: min_length[6] obviously means a valid
entry in the field must have 6 characters or more, numeric means it must not contain
letters, etc. You can also combine rules, using the 'pipe' character to separate them:

 $rules['name'] = "required|alpha|max_length[12]";

would require a name of 12 alphabetical characters or less. You can even write your
own rules.

Chapter 5

[81]

Set Up the Controller
Still in the same function, create an 'if/else' loop:

 if ($this->validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('success');
 }

You run the validation test, and if the entries don't pass the test, you go back to the
entry form. (If you're generating your view in a function inside a controller, say
because it has dynamic drop-down fields, then point back to that function instead��:
$this->myfunction rather than $this->load->view('myform');

If your validation run is successful, create another view ("success") to tell the user
that the entry has been accepted, and to give whatever navigation options you want
him or her to have to move on.

Set Up the Forms
The entry form that we have built up also needs to be tweaked. Simply returning the
user to the form each time an entry doesn't pass the validation tests will make your
users really cross! You have to say which field failed, and why. So you have to echo
out an extra line somewhere in the form:

$this->validation->error_string;

This prints out the appropriate messages, and saves the user a lot of frustration.

You also need to arrange for the form fields that were correctly entered to be
re-populated with the correct values—otherwise, the user will have to re-enter all the
fields each time she or he makes a mistake in one of them. Another way to get her or
him really cross!

Firstly, you need to go back to the controller and add some more code. ������������Immediately
after the validation rules you set up, create an array of each field you want to
re-populate. The array key is the field name as actually used in your table; the
array value is what you want the field to be called in the error message:

$fields['url'] = 'The URL of your site';

Simplifying HTML Pages and Forms

[82]

Afterwards, add the line:

$this->validation->set_fields($fields);

Now you've set up an array in the controller to store the existing values, you only
need to add lines in your form to echo them back to the user. For a simple text line,
this would be:

<input type="text" name="url" value="<?php echo $this->validation
->url; ?>" />

or, if you're using the CI form helper:

$variable .= form_input('url', "$this->validation->url");

If this is a new entry form, that should be enough. If you are using the form to
update an existing entry, then, the first time the form appears, its value should be
whatever it was set to beforehand. (Remember the code example above, where we
looked that up and called it $siterow->url?�)

But say you are using your form to update an existing entry, and it bounces back
because one field doesn't validate, you want the value of every other field in your
form to be whatever you had changed it to. Otherwise, you'd have to retype the
whole form because of one validation error.

This is easily accomplished with an 'either/or' loop. Something like:

if(isset($_POST['url']))
 {$myvalue = $this->validation->url;}
else{$myvalue = $siterow->url;}

The first time the form appears, there will be nothing in the post array; so you take
values from the underlying table. But once you submit it, the post array will be
populated, so you take the values from the validation function.

See the CI User Guide for several other things you can do with form validation. You
can use it to:

Automatically prepare your data, e.g., by trimming it or removing potential
cross-site scripting attacks
Write your own complex validation criteria, e.g., that the value the user has
entered must not already exist in your database
Write your own error messages

The validation class is a very useful and powerful part of CI and well worth the time
it takes to understand it.

•

•

•

Chapter 5

[83]

Summary
We've looked at ways in which CI generates 'views', and how it allows you to create
'mini-views', which you can nest inside other views. This means that you can set
up a title page, or a part of your display, once, and then use it over and over again,
keeping your display separated from your content.

We've also seen how CI helps you through the chore of writing HTML forms, with a
set of helpers that simplify the process and cut down on actual coding.

Lastly, we've looked at CI's validation class, which is a powerful tool for keeping an
eye on what your users actually try to enter. Nothing's perfect, but this goes a long
way towards stopping users form entering rubbish, or trying to exploit security holes
in your site. It also looks much more professional when your site politely but firmly
catches out user mistakes, rather than silently accepting meaningless entries.

On the way, we've also looked at the MVC process again, and made a choice
between the strict application of MVC principles, deliberately breaking these 'rules'
to make life easier. CI has a very flexible philosophy: use the tools if you want to,
but—provided you understand the issues—feel free to do it some other way if that
suits your priorities better.

Simplifying Sessions
and Security

Enough theory! Now let's begin to write our own application. In this chapter, we'll
outline an application that we're going to build, and we'll look at one of the basic
questions affecting any website i.e. session management and security.

In this chapter, we'll see:

How to make your pages secure
How to use CI's sessions class

Starting to Design a Practical Site with CI
We've looked at the CI welcome page and seen how it's built up by a controller file
and a view file. That's the equivalent of 'hello world'.

Once upon a time, hobby sites written by amateurs used open-source code and were
often regarded as inferior to large 'enterprise' sites written by teams of programmers
using complex procedures.

The landscape has changed. Major companies now use open-source technology.
For example, NASA and Associated Press use MySQL, the US GAO and even
Yahoo are using PHP for certain applications. And I believe that the market for the
flexible 'medium sized' application is growing, as large companies realize that their
legacy apps can't handle new tasks. It's sometimes easier to build a small, flexible
programme than to revise the old one.

CI offers a bridge between 'home-made' code and the structured reliability of
'enterprise' sites. It holds your hand and helps you to program better and produce
more consistent and reliable results.

•

•

Simplifying Sessions and Security

[86]

To demonstrate the flexibility of CI, let's build our own application.

To re-state my requirements, I want to build something for a specific purpose. I run
several websites, some of them for myself, and some for quite demanding clients. I
need to maintain these sites, test them, and generally keep a track of them. Mostly,
this is routine stuff. I could hire someone to do it for me, but it would be cheaper to
write a website to automate as much of the process as possible.

So my requirements are:

1.	 To manage one or more remote websites with a minimum of
human intervention

2.	 To run regular tests on the remote sites
3.	 To generate reports on demand, giving details of the site and of

tests conducted

I want to be able to set the site to run on a Cron, if my ISP allows it; if not, to run it
myself twice a day or once an hour (as I please), and let it conduct a pre-arranged
pattern of tests.

I don't want to know the details, unless something goes wrong (then I'd like an email
telling me exactly what happened and exactly where), but I do want to be able to
print out management reports for my clients to impress them with the regular and
comprehensive checks I'm doing, and the (hopefully!) flawless performance of
their sites.

To avoid making the code too long and repetitive the code in this book
is not very secure, so please bear that in mind if you use it for real.
This chapter covers a basic means of securing your site's pages against
unauthorized users, but other PHP security issues, which aren't unique to
CodeIgniter, are outside the scope of this book.

At this stage, we're going to look at CI's approach to things that are generic to most
dynamic websites. So we'll leave the detailed design of our site until later. Let's start
with some of the very basic items.

Moving Around the Site
Any website is a collection of separate programmes, and it's essential that they are
able to talk to each other. As we saw in Chapter 3, CI links them by their URLs.
Typically, URLs take the pattern:

Chapter 6

[87]

base url http://www.mysite.com. This is the plain vanilla address
everyone uses to access your site. Readers don't need to know all
the rest of the URL structures because the site builds them up as it
needs them.

index file Segment 1: index.php
This is the main file that CI starts off with every time the site is hit.

class (or controller) Segment 2: start
If no controller is set, CI defaults to the controller you specified in
the config file—see below.

method (or function) Segment 3: assessme
If no method is set, CI defaults to the index function of the
controller, if there is one. If not, you get a '404' page.

plus any parameters Segment 4: fred (and Segment 5: 12345, Segment 6: hello, etc.)

So, to call the assessme method in the start controller with the parameters fred
and 12345, your URL will be:

http://www.mysite.com.index.php/start/assessme/fred/12345.

This code expects your site to contain a controller called start.php that includes
a method assessme, which expects two parameters. A URL like this will call any
function in any controller on your site. So it's ideal for a menu-based page.

For a practical example of how this can work, let's set up the first page the user sees
on our site. We'll set up a controller called start, and make it our default controller.

Well, first of all, CI, as it comes out of the box, is set to go to the welcome
controller by default, so I need to change this. CI's default route is held in the
/system/application/config/routes file. At the moment this reads:

$route['default_controller'] = "welcome";

So I'll change it to:

$route['default_controller'] = "start";

(Just remember, from the table above, if your default controller doesn't have a
default index method, you'll get a 404 error every time anyone logs on to your plain
vanilla base URL, which is not a good idea!)

Now I need to write my new start controller. Remember the basic format:

<?php
 class Start extends Controller
 {
 function Start()

Simplifying Sessions and Security

[88]

 {
 parent::Controller();
 }
 function assessme($name, $password)
 {
: if($name == 'fred' && $password == '12345')
 {$this->mainpage();}	
 }

 }
 ?>

Save this in the /system/application/controllers folder as start.php. (Note the
cases: Start has an upper-case letter in the class name and constructor function, but
not in the saved file name.)

The second line tells you that this is a controller. Then the constructor function starts
and loads the parent controller class methods. The assessme function expects two
variables $name and $password. CI (from version 1.5 onwards) automatically assigns
any URL segments after the second as parameters, so fred and 12345 will become
the $name and $password parameters, respectively.

So, if I type in the URL on the previous page, I'll be re-directed to the mainpage()
function. We'll set this up later in the start controller. (If not, then the code will
just die.)

For those more used to procedural PHP than OO classes, please note a function
within a class has to be addressed as $this->xxxx. So, if I'm calling the mainpage()
function of the start controller from another function within the start controller, I
have to call it $this->mainpage(). Otherwise, CI won't be able to find it.

Of course, it's unlikely that anyone would type in a URL like:
http://www.mysite.com.index.php/start/assessme/fred/12345.

Mostly, they will just enter
http://www.mysite.com

and expect the site to sort out all the internal navigation. So let's start that now.

Often, the first thing you see on a site is a log-in form. So let's prepare one of those.
First, I add a new function to my start controller. I want the site to default to this
function, so I'll call it index():

 function index()
 {
 $data['mytitle'] = "My site";

Chapter 6

[89]

 $data['base'] = $this->config->item('base_url');
 $data['css'] 	 = $this->config->item('css');
 $data['mytitle'] = "A website to monitor other websites";
 $data['text'] = "Please log in here!";

 $this->load->view('entrypage', $data);
 }

This is calling a view, entrypage. The view includes a form, and the form allows the
user to submit a password and username. HTML forms must point to a page that
will handle the data in the $_POST array. We've already written the function in our
start controller to receive this: it's assessme(). In plain old HTML, the form on our
view should begin:

<form method="post" action="http:/www.mysite.com/index.php/start/
assessme" />

I've explained the assessme function a little. There's not much point in a function
that only has one username/password combination. I need some way to look it up
in a database. To make the structure more modular, I'm going to hand that over to
another function, checkme().

So, as you will see, assessme() calls checkme(). Checkme() does some sort of test
on the password and username (we haven't written that yet) and returns 'yes' or 'no'
to assessme(). If it's yes, assessme() calls another function, mainpage(), which
returns a view.

Notice the advantage of the modular approach. Each function has a role. If I need
to alter the way the system checks a password, I only have to alter the checkme()
function. If I need to alter the page it displays on a correct response, then I go to the
mainpage() function.

Let's just look at the structure of the code and the way the sections interact. (Note
that in order to make the example simpler to follow, we are not 'cleaning' the input
from our form here. Of course, this leaves your code open to problems. CI's form
class automatically sanitizes entered data.

/*receives the username and password from the POST array*/

 function assessme()
 {
 $username = $_POST['username'];
 $password = $_POST['password'];

 /*calls the checkme function to see if the inputs are OK*/

Simplifying Sessions and Security

[90]

 if($this->checkme($username, $password)=='yes')
 {

 /*if the inputs are OK, calls the mainpage function*/
 $this->mainpage();
 }

/*if they are not OK, goes back to the index function, which
re-presents the log-in screen */
 else{

$this->index();
}

 }

/*called with a u/n and p/w, this checks them against some list. For
the moment, there's just one option. Returns 'yes' or 'no'*/

 function checkme($username='', $password='')
 {
 if($username == 'fred' && $password == '12345')
 {return 'yes';

 else{return 'no';}
 }

On lines 5-6, assessme() receives the output of the form from the $_POST array. This
will contain something like:

[username] => fred [password] => 12345

The assessme() function passes these two variables to another function, checkme().
This simply tests if they are fred and 12345, respectively, and if they are, it returns
'yes'. Obviously, on a real site this would be more complex. You would probably do
a database lookup for valid username/password pairs. Making it a separate function
means I can test the rest of my code now, and improve the checkme() function later,
at my leisure.

If the username and password are a valid combination, the assessme() function
calls another function, mainpage(), which lets me into the site. Otherwise, it goes
back to showing me the index() function—that is, the log-in form again.

The next problem we have is how to manage state. In other words, how to recognize
the logged-in user when (s)he makes another page request.

Chapter 6

[91]

Security/Sessions: Using Another CI
Library Class
If I want to build a session mechanism that will keep unwanted users from accessing
my files, how many lines of code will it take?

The Internet works by a series of requests. Your browser makes a request to my
server to see a particular page. My browser passes the page back to your server. You
look at it, and perhaps need to make another request, so you click on a hyperlink,
which makes a request to my server. And so on.

The Internet is 'stateless'—that is, each request made by your browser to my website
is treated as a separate event, and the HTTP protocol, which underlies the Internet,
has no direct way of linking your request to any other requests (that you may have
made). It's as if you were in a restaurant, the waiter takes your order, and brings you
your meal, but then forgets all about you. That's fine, until he needs to bring you a
bill, or to remember that you are entitled to a special discount, or simply remember
that you wanted him to ring for a taxi for you after you've finished your meal.

If you want your website to connect one page request with another, you have to
manage the 'state' of the relationship: somehow to let the website know that some
requests are coming from the same browser, and should be treated specially.

PHP offers two ways of managing state: using cookies, or a specially generated
session ID. The PHP session function automatically checks if the website is accepting
cookies; if not, it uses the session ID method which is passed via the URL.

Cookies are small strings of data that websites pass back to any browser
that accesses the site. The browser automatically stores it away. Once
the cookie is there, the website can check for it when the browser next
attempts to access the site. If it finds the right cookie, it can use the
information in it to configure itself appropriately. This may mean closing
off certain pages to unauthorized users, or adding personal information.
In our restaurant analogy, the waiter would leave your bill on the table,
and next time he saw you, that would remind him that you were entitled
to 15% discount, so he could take that into account when working out
your bill.

Because some people set their browsers not to accept cookies, PHP offers an
alternative approach. Each time a browser requests access, the site generates a
random string called the 'session ID', and returns it to the browser. Browsers then
add this to the URL when they make their next request, so that the site can recognize
the browser. (Instead of the waiter leaving the bill on your table, you make him carry
it back and forth with him to the kitchen.)

Simplifying Sessions and Security

[92]

CI has a session class that handles much of the same stuff. In fact, it reduces a lot
of coding to one line. We saw in the last chapter that CI has a wide range of 'library
classes', which simplify most of the common tasks that a website deals with. These
are the core of frameworks: pre-written chunks of highly abstracted code, which
perform essential functions for you. All you need to know is where they are, how to
address them and use their methods, and what parameters they expect. In return,
you get to use professional code without having to write it!

If you want to use the functionality inside a class from within your controller or
model, you must remember to first load the class into the controller or model. (A few
classes, such as config are always automatically loaded, which is why we haven't
loaded it in any of our code so far.)

You load a library class simply:

$this->load->library('newclass');

Normally, put this line in the constructor of your controller or model.

If you think you will use a library class in every controller, you can have it load
automatically just as the config class does. Go to the /system/application/
config/autoload file, and add the name of the class you want into the line:

$autoload['libraries'] = array();

So that it looks like this:

$autoload['libraries'] = array('newclass','oldclass');

The library class that we're going to use first is the session class, which helps you to
maintain state, and to identify users. It's quite simple to do this. Here's our enlarged
assessme() function from our start controller with the new lines highlighted:

 function assessme()
 {
 $this->load->library('session');
 $username = $_POST['username'];
 $password = $_POST['password'];

 if($this->checkme($username, $password)=='yes')
 {
 $this->mainpage();
 }
 else{$this->index();}	
 }

Chapter 6

[93]

(I've loaded the session library at the start of the function so you can see it, but
normally, I'd load it in the controller's constructor, so it is loaded for all the other
functions in this class.)

Just loading the session class immediately gives you a huge chunk of functionality
in exchange for the one line of code. It will automatically read, create, and
update sessions.

Well, to be frank, it's not quite one line of code. You have to make some changes to
the config file first, to tell the session class what you want it to do.

Check your system/applications/config/config.php file, and you'll find a
section like this:

Session Variables

|
| 'session_cookie_name' = the name you want for the cookie
| 'encrypt_sess_cookie' = TRUE/FALSE (boolean). Whether to encrypt
the cookie
| 'session_expiration' = the number of SECONDS you want the session
to last.
| by default sessions last 7200 seconds (two hours). Set to zero for
no expiration.
|
*/
$config['sess_cookie_name'] = 'ci_session';
$config['sess_expiration'] = 7200;
$config['sess_encrypt_cookie'] = FALSE;
$config['sess_use_database'] = FALSE;
$config['sess_table_name'] = 'ci_sessions';
$config['sess_match_ip'] = FALSE;
$config['sess_match_useragent'] = FALSE;

For now, make sure sess_use_database is set to FALSE.

Now, every time your users connect, the site will save a cookie on your machine,
containing the following information:

A unique Session ID generated by CI (not to be confused with a PHP session
ID string, which isn't generated in this instance). This is a random string
created by CI for this session.
The user's IP Address

•

•

Simplifying Sessions and Security

[94]

The user's User Agent data (the first 50 characters of the browser data string)
Timestamps for "last activity"

If you set sess_encrypt_cookie to FALSE, you can read the cookie on your browser
and see what has been saved (it's partly encoded, but you can make it out) e.g.:

ip_address%22%3Bs%3A9%3A%22127.0.0.1%22%3Bs%3A10%3A%22

includes the user's URL—in this case, 127.0.0.1). If you set it to TRUE, the cookie
is encrypted, just a string of random gunk. Your browser can't even distinguish
separate sections of the cookie, which means that the user can't meaningfully alter it
without invalidating it.

When the user makes another page request, the site can then check whether the
session ID has been saved on the user's browser as part of the cookie. If it has, you
know they are part of an existing session. If not, you know they are a new session.
Provided I remember to load the CI session class on all my other controllers as well,
CI will make the same checks for them too. All I have to do is tell each controller how
to behave if there isn't a cookie.

Turning Sessions into Security
This in itself doesn't make a security system. Anyone who visits the site starts a
session. The code just records whether they are a new visitor or not. One way of
preventing unauthorized access to some pages involves adding something else to
their cookie if they are 'logged in', so that I can test for that. Then, if they enter the
correct username and password once, that will be recorded in the cookie, and the
session mechanism will find it when it checks for cookies as each new request comes
through. I can then test for that, and if I find it, the site will let them into protected
pages for the rest of the session. They won't have to keep on logging in.

Adding something to the cookie is easy. In my assessme() controller, once I have
decided if the password and username are acceptable, I add:

if($this->checkme($username, $password)=='yes')
{
 $newdata = array(
 'status' => 'OK',
);
 $this->session->set_userdata($newdata);

$this->mainpage();
}

•

•

Chapter 6

[95]

That takes the contents of my $newdata array—just one variable in this case—and
adds it to the cookie string. Now, whenever the password/username combination is
acceptable, assessme() will add 'OK' to the cookie, and I can start each controller
with this code:

/*remember to load the library!*/
 $this->load->library('session');
/*look for a 'status' variable in the contents of the session cookie*/
$status = $this->session->userdata('status');
/*if it's not there, make the user log in*/
 if(!isset($status) || $status != 'OK')
 { /*function to present a login page again…*/}
/*otherwise, go ahead with the code*/

Here, you have the basis of a security fence around your site. You can easily make
it more elaborate. For instance, if some of your users have higher access levels than
others, you can store a level in the status variable rather than 'OK'—then you can
use this in conditional tests to control access to functions.

Saving this sort of data in a cookie is frowned upon because the user can easily
rewrite the cookie on their machine between visits to your site. Given that CI's
session class encrypts it, you're fairly safe. However, the alternative is to create a
database of users, and after one has logged in, to write the 'OK' to the database
against that session ID. Then, for subsequent accesses, you check the session ID (in
the cookie) against the database, to see whether it has 'OK' or a level against it.

It is very simple to save the session data in your database. First, create the database
table. If you're using MySQL, use this SQL query:

CREATE TABLE IF NOT EXISTS `ci_sessions` (
session_id varchar(40) DEFAULT '0' NOT NULL,
ip_address varchar(16) DEFAULT '0' NOT NULL,
user_agent varchar(50) NOT NULL,
last_activity int(10) unsigned DEFAULT 0 NOT NULL,
status varchar(5) DEFAULT 'no',
PRIMARY KEY (session_id)
);

Then, alter the connection parameters in the system/application/config/
database.php file to tell CI where the database is. See Chapter 4 for more details
on databases.

If all works, you will see the data build up in your database table as you connect
and disconnect. If you have sessions stored in a database table, as each user connects
to your site, the site tests for a cookie. If it finds one, you can then have it read the
session id, and match this against the session ids stored in the database.

Simplifying Sessions and Security

[96]

You now have a robust session mechanism. And all of this came from one line
of code!

Just one caveat. The native PHP session class can cope with users who turn off
cookies on their browsers. (Instead of storing a cookie, it adds session data to the
URL string.) The CI class does not do this. If the user has turned off cookies, then
(s)he can't log on to your site. Whether this is a problem for you depends on the
people you expect to use your site. This is one enhancement I hope Rick Ellis will
soon make to CI.

Security
Notice that the session class automatically stores information about the IP address
and user agent of the user making a page request. You can use these to give
additional security.

There are two settings you can change in your config file for additional security:

sess_match_ip: If you set this to true, CI will attempt to match the user's
IP address when it reads the session data. This is to prevent users from
'hijacking' a log-in. However, some servers (both ISPs and large corporate
servers) may issue requests by the same end user over different IP addresses.
If you set this value to true, you may exclude them unintentionally.
sess_match_useragent: If you set this to true, CI will try to match the User
Agent when reading the session data. This means that someone who tried to
hijack a session would have to ensure that the 'user agent' setting returned
by his or her system matched that of the genuine user. It makes hijacking a
little more difficult.

CI also has a user_agent class, which you load like this:

$this->load->library('user_agent');

Once loaded, you can ask it to return various information about any agent browsing
your site, for instance, the type of browser and operating system, and in particular
whether it is a browser, mobile, or robot. If you want to list the robots that visit your
site, you might do it like this:

$fred = $this->agent->is_robot();
if ($fred == TRUE)
	 {$agent = $this->agent->agent_string();
/*add code here to store or analyse the name the user agent is
returning*/
}

•

•

Chapter 6

[97]

The class works by loading, and comparing against, the array of user agents,
browsers, and robots contained in another of the config files: system/
application/config/user_agents.

If you wished, you could easily develop this to enable your site to lock out certain
types of browser or certain robots. However, remember that it is easy for an attacker
to write robot user agents, and have them return whatever user_agent string you
want, so they can easily masquerade as common browsers. Many robots, including
ones like the Googlebot listed in CI's user_agents array, are 'well-behaved'. This
means that if you set your robots.txt file to exclude them, they won't trespass.
There is no easy way of excluding robots that don't obey this file, unless you know
their names in advance!

In CI, the session mechanism stores the IP of the requesting site, so you could use
this to operate a black-list of sites. Retrieve the IP from the session like this:

/*remember to load the library!*/
 $this->load->library('session');
/*look for an 'ip_address' variable in the contents of the session
cookie*/
$ip = $this->session->userdata('ip_address');

Then you can test the $ip variable against a blacklist.

You could also develop CI's session mechanism to limit the damage from repeated
requests—such as denial of service attacks where a robot is set to overload your
site by repeatedly asking for pages. Or you could use this mechanism to handle
'dictionary' attacks, where a robot is set up to call your log-in form repeatedly, and
try hundreds or thousands of password/username combinations until it finds the
right one.

You can do this because CI's sessions class stores the last_activity time for each
session. Each time a page is requested, you can check how long ago the last request
was made by this user. While one time interval doesn't tell you very much, you can
set the system to store more data and to develop usage patterns. A dictionary attack
relies on getting a speedy reply, otherwise it will take too long. If you detected too
many requests in rapid succession, you could either end the session, or slow down
the response.

Simplifying Sessions and Security

[98]

Summary
We've outlined an application that we'd like to build, and attacked the first issue that
almost any application raises: session management and (if we want to protect parts
of our site from unauthorized users) security.

To do this, we've looked at the CI sessions class in some detail, and seen how it
creates session records and leaves cookies on the visitor's browser.

It can then look for cookies when subsequent requests are made, and you can use the
response to control the way your site responds.

CodeIgniter and Objects
This is the geek chapter. It describes the way CodeIgniter actually works, 'under the
hood'. If you are new to CI, you may want to skip it. However, sooner or later, you
may want to understand why things happen in certain ways—as opposed to just
knowing that they do.

Objects confused me when I started to use CodeIgniter. I came to CodeIgniter via
PHP 4, which is a procedural language, not really an Object-Oriented (OO) language.
I duly looked up objects and methods, properties and inheritance, and encapsulation,
but my early attempts to write CI code were plagued by the error message "Call to
a member function on a non-object". I saw it so often that I was thinking of having it
printed on a t-shirt: it has a mysteriously libertarian, anarchist tone, and I could see
myself wearing it at a modern art exhibition.

To save the world from a lot of boring t-shirts, this chapter covers the way in
which CI uses objects, and the different ways you can write and use your own
objects. Incidentally, I've used 'variables/properties', and 'methods/functions'
interchangeably, as CI and PHP often do. You write 'functions' in your controllers for
instance, when the OO purist would call them 'methods'. You define class 'variables'
when the purist would call them 'properties'.

Object-Oriented Programming
I'm assuming you—like me—have a basic knowledge of OOP, but may have learned
it as an afterthought to 'normal' PHP 4. PHP 4 is not an OO language, though some
OO functionality has been tacked on to it. PHP 5 is much better, with an underlying
engine that was written from the ground up with OO in mind.

But you can do most of the basics in PHP 4, and CI manages to do everything it
needs internally, in either language.

CodeIgniter and Objects

[100]

The key thing to remember is that, when an OO program is running, there is always
one current object (but only one). Objects may call each other and hand over control
to each other, in which case the current object changes; but only one of them can be
current at any one time. The current object defines the 'scope'—in other words, which
variables (properties) and methods (functions) are available to the program at that
moment. So it's important to know, and control, which object is current. Like police
officers and London buses, variables and methods belonging to objects that aren't
current just aren't there for you when you most need them.

PHP, being a mixture of functional and OO programming, also offers you the
possibility that no object is current! You can start off as a functional program, call
an object, let it take charge for a while, and then let it return control to the program.
Luckily, CI takes care of this for you.

Working of the CI 'Super-Object'
CI works by building one 'super-object': it runs your whole program as one big
object, in order to eliminate scoping issues.

When you start CI, a complex chain of events occurs. If you set your CI installation to
create a log, you'll see something like this:

1 DEBUG - 2006-10-03 08:56:39 --> Config Class Initialized
2 DEBUG - 2006-10-03 08:56:39 --> No URI present. Default controller
 set.
3 DEBUG - 2006-10-03 08:56:39 --> Router Class Initialized
4 DEBUG - 2006-10-03 08:56:39 --> Output Class Initialized
5 DEBUG - 2006-10-03 08:56:39 --> Input Class Initialized
6 DEBUG - 2006-10-03 08:56:39 --> Global POST and COOKIE data
 sanitized
7 DEBUG - 2006-10-03 08:56:39 --> URI Class Initialized
8 DEBUG - 2006-10-03 08:56:39 --> Language Class Initialized
9 DEBUG - 2006-10-03 08:56:39 --> Loader Class Initialized
10 DEBUG - 2006-10-03 08:56:39 --> Controller Class Initialized
11 DEBUG - 2006-10-03 08:56:39 --> Helpers loaded: security
12 DEBUG - 2006-10-03 08:56:40 --> Scripts loaded: errors
13 DEBUG - 2006-10-03 08:56:40 --> Scripts loaded: boilerplate
14 DEBUG - 2006-10-03 08:56:40 --> Helpers loaded: url
15 DEBUG - 2006-10-03 08:56:40 --> Database Driver Class Initialized
16 DEBUG - 2006-10-03 08:56:40 --> Model Class Initialized

Chapter 7

[101]

On startup—that is, each time a page request is received over the Internet—CI goes
through the same procedure. ��� You can trace the log through the CI files:

1.	 The index.php file receives a page request. The URL may indicate
which controller is required, if not, CI has a default controller (line 2).
Index.php makes some basic checks and calls the codeigniter.php file
(\codeigniter\codeigniter.php).

2.	 The codeigniter.php file instantiates the Config, Router, Input, URL, (etc.)
classes (lines 1, and 3 to 9). These are called the 'base' classes: you rarely
interact directly with them, but they underlie almost everything CI does.

3.	 codeigniter.php tests to see which version of PHP it is running on, and
calls Base4 or Base5 (/codeigniter/Base4(or 5).php). These create a
'singleton' object: one which ensures that a class has only one instance. Each
has a public &get_instance() function. Note the &:, this is assignment by
reference. So if you assign to the &get_instance() method, it assigns to the
single running instance of the class. In other words, it points you to the same
pigeonhole. So, instead of setting up lots of new objects, you are starting
to build up one 'super-object', which contains everything related to
the framework.

4.	 After a security check, codeigniter.php instantiates the controller that
was requested, or a default controller (line 10). The new class is called $CI.
The function specified in the URL (or a default) is then called, and life as
we know it starts to wake up and happen. Depending on what you wrote
in your controller, CI will then initialize any other classes you need, and
'include' functional scripts you asked for. So in the log above, the model class
is initialized. (line 16) The 'boilerplate' script, on the other hand, which is also
shown in the log (line 13), is one I wrote to contain standard chunks of text.
It's a .php file, saved in the scripts folder, but it's not a class: just a set of
functions. If you were writing 'pure' PHP you might use 'include' or 'require'
to bring it into the namespace: CI needs to use its own 'load' function to bring
it into the super-object.

The concept of 'namespace' or scope is crucial here. When you declare a variable,
array, object, etc., PHP holds the variable name in its memory and assigns a further
block of memory to hold its contents. However, problems might arise if you define
two variables with the same name. (In a complex site, this is easily done.) For this
reason, PHP has several sets of rules. For example:

Each function has its own namespace or scope, and variables defined
within a function are usually 'local' to it. Outside the function, these
are meaningless.

•

CodeIgniter and Objects

[102]

You can declare 'global' variables, which are held in a special global
namespace and are available throughout the program.
Objects have their own namespaces: variables exist inside the object for as
long as the object exists, but can only be referenced through the object.

So $variable, global $variable, and $this->variable are three different things.

Particularly, before OO, this could lead to all sorts of confusion: you may have too
many variables in your namespace (so that conflicting names overwrite each other),
or you may find that some variables are just not accessible from whatever scope you
happen to be in. CI offers a clever way of sorting this out for you.

So, now you've started CI, using the URL www.mysite.com/index.php/welcome/
index, which specifies that you want the index function of the welcome controller.

If you want to see what classes and methods are now in the current namespace and
available to you, try inserting this 'inspection' code in the welcome controller:

$fred = get_declared_classes();
foreach($fred as $value)
{$extensions = get_class_methods($value);
 print "class is $value, methods are: ";
 print_r($extensions);}

When I ran this just now, it listed 270 declared classes. Most are other libraries
declared in my installation of PHP. The last 11 came from CI: ten were the CI base
classes (config, router, etc.) and last of all came the controller class I had called.
Here's the last 11, with the methods omitted from all but the last two:

258: class is CI_Benchmark
259: class is CI_Hooks,
260: class is CI_Config,
261: class is CI_Router,
262: class is CI_Output,
263: class is CI_Input,
264: class is CI_URI,
265: class is CI_Language,
266: class is CI_Loader,
267: class is CI_Base,
268: class is Instance,
269: class is Controller, methods are: Array ([0] => Controller [1]
=> _ci_initialize [2] => _ci_load_model [3] => _ci_assign_to_models
[4] => _ci_autoload [5] => _ci_assign_core [6] => _ci_init_scaffolding
[7] => _ci_init_database [8] => _ci_is_loaded [9] => _ci_scaffolding
[10] => CI_Base)
270: class is Welcome, methods are: Array ([0] => Welcome [1] =>

•

•

Chapter 7

[103]

index [2] => Controller [3] => _ci_initialize [4] => _ci_load_model
[5] => _ci_assign_to_models [6] => _ci_autoload [7] => _ci_assign_core
[8] => _ci_init_scaffolding [9] => _ci_init_database [10] => _ci_is_
loaded [11] => _ci_scaffolding [12] => CI_Base)

Notice—in parentheses as it were—that the Welcome class (number 270: the
controller I'm using) has all the methods of the Controller class (number 269). This
is why you always start off a controller class definition by extending the controller
class—you need your controller to inherit these functions. (And similarly, models
should always extend the model class.) Welcome has two extra methods: Welcome
and index. So far, out of 270 classes, these are the only two functions I wrote!

Notice also that there's an Instance class. If you inspect the class variables of the
'Instance' class, you will find there are a lot of them! Just one class variable of the
Instance class, taken almost at random, is the array input:

["input"]=> &object(CI_Input)#6 (4) { ["use_xss_clean"]=> bool(false)
["ip_address"]=> bool(false) ["user_agent"]=> bool(false) ["allow_get_
array"]=> bool(false) }

Remember when we loaded the input file and created the original input class? Its
class variables were:

use_xss_clean is bool(false)
ip_address is bool(false)
user_agent is bool(false)
allow_get_array is bool(false)

As you see, they have now all been included within the 'instance' class.

All the other CI 'base' classes (router, output, etc.) are included in the same way. You
are unlikely to need to write code referencing these base classes directly, but CI itself
needs them to make your code work.

Copying by Reference
You may have noticed that the CI_Input class is assigned by reference (["input"]=>
&object(CI_Input)). This is to ensure that as its variables change, so will the
variables of the original class. As assignment by reference can be confusing, here's a
short explanation. We're all familiar with simple copying in PHP:

$one 	 = 	 1;
$two 	 = 	 $one;
echo $two;

CodeIgniter and Objects

[104]

produces 1, because $two is a copy of $one. However, if you re-assign $one:

$one 	 = 	 1;
$two 	 = 	 $one;
$one	 =	 5;
echo $two;

This code still produces 1, because changes to $one after $two has been assigned
aren't reflected in $two. This was a one-off assignment of the value that happened
to be in variable $one at the time, to a new variable $two, but once it was done, the
two variables led separate lives. (In just the same way, if I alter $two, $one
doesn't change.)

In effect, PHP creates two pigeonholes: one called $one, one called $two. A separate
value lives in each. You may, on any one occasion, make the values equal, but after
that they each do their own thing.

PHP also allows copying 'by reference'. If you add just a simple & to line 2 of
the code:

$one 	 = 	 1;
$two 	 =& 	 $one;
$one	 =	 5;
echo $two;

Then the code now echoes 5: the change we made to $one has also happened to $two.

Changing the = to =& in the second line means that the assignment is 'by reference'.
Now, it's as if there was only one pigeonhole, which has two names ($one and $two).
Whatever happens to the contents of the pigeonhole happens both to $one and to
$two, as if they were just different names for the same thing.

The principle works for objects as well as simple string variables. You can copy or
clone an object using the = operator, in which case you make a simple one-off new
copy, which then leads an independent life. Or, you can assign one to the other by
reference: now the two objects point to each other, so any changes made to the one
will also happen to the other. Again, think of them as two different names for the
same thing.

Chapter 7

[105]

Adding Your own Code to the CI
'Super-Object'
You contribute to the process of building the 'super-object' as you write your own
code. Suppose you have written a model called 'status', which contains two class
variables of its own, $one and $two, and a constructor that assigns them values of 1
and 2 respectively. Let's examine what happens when you load this model.

The 'instance' class includes a variable 'load', which is a copy (by reference) of the
object CI_Loader. So the code you write in your controller is:

$this->load->model($status)

In other words, take the class variable 'load' of the current CI super-class ('this') and
use its method 'model'. This actually references the 'model' function in the 'loader'
class (/system/libraries/loader.php) and that says:

 function model($model, $name = '')
 {
 if ($model == '')
 return;

 $obj =& get_instance();
 ������������������������������������ $obj->_ci_load_model($model, $name);
 �}

(The $name variable in this code is there in case you want to load your model under
an alias. I don't know why you should want to do this; perhaps it's wanted by the
police in several other namespaces.)

As you can see, the model is loaded by reference into the Instance class. Because
get_instance() is a singleton method, you're always referencing the same instance
of the Instance class.

If you run the controller again, using our 'inspect' code modified to show class
variables, you'll now see that the instance class contains a new class variable:

["status"]=> object(Status)#12 (14) { ["one"]=> int(1) ["two"]=>
int(2) ... (etc)

In other words, the CI 'super-object' now includes an object called $status that
includes the class variables you defined in your original status model, assigned to
the values we set.

CodeIgniter and Objects

[106]

So we are gradually building up the one big CI 'super-object', which allows you to
use any of its methods and variables without worrying too much about where they
came from and what namespace they might be in.

This is the reason for the CI arrow syntax. To use the methods of (say) a model, you
must first load the model in your controller:

$this->load->model('Model_name');

This makes the model into a class variable of $this->, the current (controller) class.
You then call a function of that class variable from the controller, like this:

$this->Model_name->function();

and off you go.

Problems with the CI 'Super-Object'
There was one big problem for Rick Ellis when he wrote the original code. PHP 4
handles objects less elegantly than PHP 5, so he had to introduce a 'really ugly hack'
(his words) into the Base4 file. Ugly or not, the hack works, and so we don't need to
worry about it. It just means that CI works as well on PHP 4 systems as it does
on PHP 5.

There are two other issues worth mentioning here:

You can find yourself trying to work with an object that isn't available.
You have to structure your site carefully, because you can't call methods of
one controller from inside another.

Let's look at these two problems in turn. You remember the t-shirt I mentioned
above: "�� Call to a member function on a non-object"? This annoying error message
often means that you tried to use a function from a class (say a model class that you
wrote) but forgot to load the class. In other words, you wrote:

$this->Model_name->function();

but forgot to precede it by:

$this->load->model('Model_name');

Or some variation of this: for instance, you loaded the model inside one function of a
class, which loads the model, but only inside that function, and then you tried to use
its methods from inside another function, albeit in the same class. It's usually best to
load models, etc., from the class constructor function: then they are available to all
the other functions in the class.

•

•

Chapter 7

[107]

The problem can also be more subtle. If you write your own classes, for instance, you
may wish to use them to access the database, or to look up something in your config
files—in other words, to give them access to something that is part of the CI 'super-
object'. (There's a fuller discussion of how to add your own classes or libraries in
Chapter 13.) To summarize, unless your new class is a controller, a model, or a view,
it doesn't get built in to the CI super-object. So you can't write things inside your new
class like this:

$this->config->item('base_url);

This just won't work, because to your new class, $this-> means itself, not the CI
super-object. Instead, you have to build your new class into the super-class by calling
the Instance class (sound familiar?) using another variable name (usually $obj)

$obj =& get_instance();

Now you can write that call to the CI superclass as:

$obj->config->item('base_url);

and this time it works.

However, as you write your new class, remember that it still has its own identity.
Let's use a short outline example to make this clearer.

You want to write a library class that prepares a URL based on the location of the
server that requests the page. So you write some code to look up the geographic
location of the IP address that is calling your page (using a library like the netGeo
class available from http://www.phpclasses.org/browse/package/514.html).
Then, using a switch function, you select one of several alternative functions, and
you serve up an English page to US or British requests, a German page to German or
Austrian requests, and so on. Now, the full URL to your country-specific page will
be made up of two parts: the base URL of your site (www.mysite.com/index.php/),
plus the URL of the individual page (mypage/germanversion).

You need to get the base URL of the site from CI's config file. The second half of
the URL is being generated by a switch statement in the constructor of your new
class—if this client is in Germany, serve up the German page function, etc. As this is
being done in the constructor calls, you need to put the result into a class variable, so
it can be used in other functions within the same class. This means that:

The first half of your URL comes from the CI config file, which can
only be referenced through the superobject, to which you have linked
using $obj =& get_instance(). In other words, you call it using
$obj->config->item('base_url);

•

CodeIgniter and Objects

[108]

But the second half of your URL is generated inside the constructor of your
new class and assigned to a class variable, $base. It has nothing to do with
the CI super-object; it belongs to your new class, and is referenced as
$this->base

This can lead to using both $this-> and $obj-> references in the same line—e.g.:

class my_new_class{
var $base;
My_new_class()
{
$obj =& get_instance();
// geolocation code here, returning a value through a switch statement
//this value is assigned to $local_url
$this->base = $obj->config->item('base_url);
$this->base .= $local_url;
}

Getting these confused is another fruitful source of, "Call to a member function on
a non-object". In our example, you'd get that error message if you tried to call either
$obj->base, or $this->config->item().

Turning to the remaining problem, you can't call methods of one controller
from inside another. Why would you want to do this? Well, it depends. In one
application, I wrote a series of self-test functions inside each controller. If I called
$this->selftest() inside the controller, it did various useful tests. But it seemed
against the principle programming virtue of laziness to have to repeatedly call the
self-test method in each controller separately. I tried to write one function, in one
controller, that would go through all the controllers, call the self-test method in each,
amalgamate all the results while I stared out of the window, and then give me a
comprehensive report in exchange for only one mouse click. Alas, no. Can't be done.

As a general rule, if you have code that may be needed by more than one controller,
put it in a model or a separate script of some sort. Then they can both use it. (Of
course, this doesn't help with my self-test problem, because the code to test the
controllers has to be in the controllers!)

But these are minor problems. As Rick Ellis put it to me:

"�� I wanted to arrive at something more simple so I decided to make one big controller
object containing lots of other object instances:������������������������������� …������������������������������ when a user creates their own
controllers they can easily access anything that has been instantiated just by calling
it, without worrying about scope".

•

Chapter 7

[109]

That's pretty well how it works, most of the time, efficiently, and completely in the
background. So I never did get that t-shirt printed.

Summary
We've looked at the way CI builds up one 'super-object' to make sure that all the
methods and variables you need are automatically available to you without you
having to manage them and worry about their scope.

CI makes extensive use of assignment by reference, instantiating one class after
another and linking them all together so that you can access them through the
'super-class'. Most of the time, you don't need to know what the 'super-class' is
doing, provided that you use CI's 'arrow' notation correctly.

We've also looked at how you can write your own classes and still have access to the
CI framework.

Lastly, we looked at a few problems that can arise, particularly if you're not used to
OO programs, and suggested a few solutions.

Using CI to Test Code
This chapter looks at how CI can help you to test your code. Testing is the heart of
our application. We've built it to test other remote applications; we also want to test
it itself, as we develop it. CI makes this a lot easier.

However, 'testing' can mean a lot of things, so we start off by looking at the
difference between the two main types, and at some other reasons for which you
might want to run tests.

Then we look at CI classes to help with testing:

Unit tests
Benchmarking
The 'profiler'
Ways in which CI helps you to involve your database in tests without
scrambling live data

Why Test, and What For?
A lot has been written about testing. It has become an industry. Complex programs
employ an army of testers or test software. And the concept of 'test-driven
development' is that you design your tests first, before even a single line of code:
then write your code to pass them.

At the other extreme, many programmers don't do any systematic testing, because it
seems too difficult, boring, or time-consuming. Maybe we try the program out a few
times, and then hope for the best.

CI offers several ways to make testing easier. Even—honestly!—more fun.

•

•

•

•

Using CI to Test Code

[112]

There are two main types of tests:

Unit tests: These take a 'bottom-up' approach. They look at one chunk of your
code, say a single function, throw in some variables, and see if it gives back
the right answer.
End-to-end tests: These are 'top-down'. They focus on something the site is
supposed to do, and see if it does it: for instance, they try to log in to your
site (using a valid username and password) and see if it allows them. (And
then they try to log in using an invalid password…)

As you can see, it's a different philosophy. One tests chunks of code, and doesn't
know or care what the end result is; while the other tests the end result, and doesn't
know or care which chunks of code got you there.

The important thing is to think through why you are testing. What worries you
most? What is most likely to go wrong and embarrass you? What sort of information
do you need back from your tests—just a simple OK/ not OK, or something more
complex? For each application, how much time can you afford to put in to writing
and maintaining tests?

While we're developing our test site, we need to test our code while we write it. Of
course, we try to anticipate everything the user might do, and every situation that
might arise. This is one big area where unit tests are useful: just the fact of designing
tests helps you to improve the design of the code.

Once our code is up on a production server, its day-to-day integrity is largely beyond
our control. At its worst, this leads to clients finding error messages or blank screens,
and expecting you to do something about it, often at times when you'd rather be
doing something else. That's why we're building this site, to test other remote sites.

CI can help us to check developing sites to see:

Firstly, that we've anticipated a range of things that might go wrong. For
instance, I might do a database query to delete a record with a given ID
number in a specific table. Yes, it works: I've tested it by doing it. But what
happens if—somehow—the code calls a table that doesn't exist? Or gives an
invalid ID number? Or doesn't give one at all? This is where unit tests
are helpful.
Secondly, when I write more code somewhere else, does my first block of
code still work the way I want, or have I inadvertently altered something the
first block depends on? Again, a job for unit tests. They can also help us to
check production sites regularly to see that the site is there (and all the parts
of it—e.g., if the database is on a separate server, an ordinary 'ping' test
won't do!)

•

•

•

•

Chapter 8

[113]

CI gives you a lot of help, whichever position you take. It doesn't have a class to run
end-to-end tests, but you can do this using other PHP code that is outside the scope
of this book. But let's look first of all at how CI displays errors to you as you
develop code.

CI's Error Handling Class
CI has a system of its own for detecting and reporting errors. In one way, these are
the simplest and most common tests of all: they are those helpful (or infuriating)
messages you see when you are developing your own code and it doesn't work.

By default, CI displays all errors on the screen. The alternative is to fail silently;
giving you no idea of what went wrong, so this is essential for development. Overall
behavior is controlled from the main index.php file, which begins:

/*
|---
PHP ERROR REPORTING LEVEL
By default CI runs with error reporting set to ALL. For security
reasons you are encouraged to change this when your site goes live.
For more info visit: http://www.php.net/error_reporting
*/
 error_reporting(E_ALL);

This is a PHP command. To turn off error reporting, replace the last line with:

error_reporting(0);

This would be appropriate for a production site, where you don't want the details of
errors displayed to users.

CI has three functions, show_error(), show_404(), and log_message(), which
control how errors are displayed on your system. (Unusually, these functions are
globally available: you don't have to load anything before you can use them, just
go right ahead and type them in!). In fact, show_error() and show_404() usually
happen by default; the first displays your errors in a neat little HTML-formatted box
at the top of the screen; and the second shows a '404' page' if you try to access a page
that isn't there.

Using CI to Test Code

[114]

The third function, log_message(), is more interesting. You may want to develop
your own error log, maybe because you can't access the log on your ISP's Apache
server. First, you need to set permissions to make sure that your /system/logs
folder is writable. Then you set the level of logging in the config file:

/*
--
Error Logging Threshold
--

|
| If you have enabled error logging, you can set an error threshold to
| determine what gets logged. Threshold options are:
|
| 0 = Disables logging
| 0 = Error logging TURNED OFF
| 1 = Error Messages (including PHP errors)
| 2 = Debug Messages
| 3 = Informational Messages
| 4 = All Messages
|
| For a live site you'll usually only enable Errors (1) to be logged
| otherwise your log files will fill up very fast.
|
*/
$config['log_threshold'] = 4;

/*

This starts logging, automatically.

If you alter index.php to turn off the screen display of messages, this doesn't stop
logging. So you can see what your system is doing, and your users can't.

Chapter 8

[115]

CI generates a new log file each day, and writes to it as you instruct it. But beware,
these log files can rapidly become very large. Here's a sample of one:

—and so on for another 3000 lines, on a day when the program had only
limited usage.

In practice, you may want to develop your own error handling procedures to display
a default message to users when something goes wrong.

CI's Unit Test Class
Now let's get on to proper testing: proactively looking at bits of your code to make
sure they work under different circumstances.

CI makes unit testing simple with its own class. You load it with this:

$this->load->library('unit_test');

and then, for each test, you decide three variables:
$test—the actual test, as a PHP expression
$expected_result—the result you expect
$test_name—the test name as you want it displayed

•

•

•

Using CI to Test Code

[116]

Here are two tests of the PHP function floor() (which rounds down a 'float'
number to the nearest integer below it). Notice that the first expected result is correct;
the second is wrong. (A deliberate mistake, honestly.)

 $test = floor(1.56);
 $expected_result = 1;
 $test_name = 'tests php floor function';
 $this->unit->run($test, $expected_result, $test_name);

 $test = floor(2.56);
 $expected_result = 1;
 $test_name = 'tests php floor function';
 $this->unit->run($test, $expected_result, $test_name);

adding:
echo $this->unit->report();

displays the result as formatted HTML, like this:

If you want your system to analyze or store it, using:
echo $this->unit->result();

returns the information as a two-dimensional array, which you can use:
Array (

 [0] => Array
 ([Test Name] => tests php floor function
 [Test Datatype] => Float

Chapter 8

[117]

 [Expected Datatype] => Integer
 [Result] => Passed
 [File Name] => E:\myfile.php [Line Number] => 69)
 [1] => Array
 ([Test Name] => tests php floor function
 [Test Datatype] => Float
 [Expected Datatype] => Integer
 [Result] => Failed
 [File Name] => E:\myfile.php
 [Line Number] => 73)

)

So now we have an easy way of getting the results.

Along with simply comparing values (does floor(1.56) equal 1?) the class can also
test for data types (is_string, is_bool, is_true, etc.—a full list is in the online User
Guide.) You replace your:

 $expected_result = 1;

line with something like:

 $expected_result = 'is_float';

and the test proceeds as before.

If you've scattered these things throughout your code, it may run slowly, and will
display all sorts of diagnostics on your screen. But you can stop this. Simply add the
following line in your constructor:

 $this->unit->active(FALSE);

And (surprise, surprise) if you change FALSE to TRUE, back it comes again. You can
even do this dynamically.

When to Use Unit Tests
There is little point in testing whether a standard PHP function works. True. But
there is value in testing your own functions to see if they consistently return the
expected result. The main worry is always that:

They will behave perfectly when you test them
But a user will immediately think of a combination of circumstances you had
never imagined, which will cause the function to fail
Or you will write some more code, or alter existing code, and your own
functions will no longer work properly

•

•

•

Using CI to Test Code

[118]

Sometimes, the failure is due to a programming issue, which can be caught by a unit
test. You can have fun thinking up different parameters to test for.

Let's go back to our example of a function that performs a database query to delete a
record with a given ID from a given table. What does it do if:

The ID is NULL, or '', or not set? (Particularly important this one, as you
might accidentally delete every entry in the table.)
The ID is not an integer? ("x", for example?)
The ID is an integer, but is out of range (you have 1000 entries in your table,
but this ID is 1001?)
The ID is a negative number?

and so on. It's quite amusing thinking of different conditions to test for.

Throw them all at the function with a unit test, and see. However, think carefully
about the results you expect. The first case and second case are clearly programming
errors. You should rewrite your program to prevent this happening. So if it does, you
want the test to return failure.

We define the result we want from each test, so that we test if the program acted
correctly, not if the parameter is correct. If we submit an 'x', that's an incorrect
parameter; but if the program throws an exception, that is correct behavior. It helps
to write all the tests to show 'passed' if the program is doing what we want, so we
only have to take notice of exceptions.

The third case above, where the ID is an integer but out of range, is not necessarily
a programming error. The database should be able to sort this out safely. However,
what you need to do depends on your program and its objectives. Maybe, before you
submit the integer value, you need to check that it is within range? Or maybe you are
happy to let it run, in which case, because the program may return a database error
message to your screen, you need to intercept this and replace it with a bland 'sorry,
unable to do this at this time' error message? Or maybe test the delete operation for
success and branch accordingly?

Example of a Unit Test
Let's build some code to test the 'delete' function. I've set up a 'delete' function
(which is in a model) so that it detects that I am testing it, and on failure returns a
value ($dbvalue).

if($test == 'yes')
 {
 $place = __FILE__.__LINE__;

•

•

•

•

Chapter 8

[119]

 $dbvalue = "exception at $place: sent state value $state to
 trydelete function ";
 return $dbvalue;
 }

If the test is successful, a similar loop returns a $dbvalue of 'OK'. The test code is
simple. First, we build an array of ID values and the results we expect from each. In
other words, if we try to delete using an ID of '' or 'abc' the system should throw an
exception, prefixing the diagnostic line it returns with the word 'exception'. If it is 1,
or 9999, the system should accept it as a valid ID, and prefix the line it returns
with 'OK'.

So the array key is the condition you are testing for and the array value is the result
you expect the function to return.

$numbers = array(
 '' => 'exception',
 'NULL' => 'exception',
 'x' => 'exception',
 '9999' => 'OK',
 '-1' => 'exception',
 '1' => 'OK'

);

Now use the following code to loop through the $numbers array and use the CI unit
test to do each test.

The test is to run the $this->delete() function, specifying the table you are
deleting from ('fred') and the ID value ($testkey).

foreach($numbers AS $testkey => $testvalue)
{$dbvalue = $this->delete('fred', $testkey);
$result .= $this->unit->run(preg_match("/$testvalue/",

 $dbvalue), 1, $dbvalue);
 }

Remember, the CI unit test allows you to provide three parameters:

$test: for each array key, we try the database by calling the delete function
with $testkey, the array key—which is the ID (or lack of an ID) we are
submitting to the function. The function returns a value (here called
$dbvalue). Our $test is to compare that value, using a regex, to what we
expect it to be—which is $testvalue, the value of the array. (Does it include
'OK' or 'exception'?)
$expectedresult is '1', because if our code is correct we expect the regex to
find a match. We expect 'NULL' to throw an exception and 1 to be OK.

•

•

Using CI to Test Code

[120]

$testname: this parameter is optional: it is the string returned by the
test, which goes on to explain what value we tried to use and what we
were testing.

Here's the result, as shown in CI's inbuilt HTML format: All return the Result
'passed', so we can have confidence in our code. (The Test Datatype and Expected
Datatype are always shown as integers, even though our inputs may not be integers,
because the test is actually a regex comparison, which returns a 1 or a 0).

The fun, and actually quite useful, thing is thinking of new tests to include in
the array!

For instance, what if the 'id' is a number, but not an integer? To try this with the
above code, you'd add

 '3.5' => 'exception',

to the array of test values.

•

Chapter 8

[121]

However, you'd be surprised (as I was) to find that this test fails—in other words, it
suggests that your function would accept 3.5 as an integer. The reason is that PHP
does a 'loose' equality test; it finds a number and takes this for an integer. What you
need in this case is a 'strict' mode of test that compares the datatype as well as the
values. To set this, use:

 $this->unit->use_strict(TRUE);

CI's Benchmarking Class
This class allows you to measure the time it takes for your program to go from one
point to another. You insert one line of code to define the first point:

$this->benchmark->mark('here');

and another line of code to define the second:

$this->benchmark->mark('there');

then you insert a third line to tell you the elapsed time:

$fred = $this->benchmark->elapsed_time('here', 'there');

You can then print the result, $fred, or do whatever else you want to do with it.

Benchmarks can have any name you like, as long as they are different, and you can
have as many pairs as you want. You can use these tests to see if a particular part of
your code is taking a suspiciously long time. If one of your pages takes too long to
load, you can insert several benchmarks to identify the actual piece of code that is
causing the delay.

For the tests in our website monitoring application, however, we aren't so much
interested in one-off times. By the time we get our applications up on the Internet,
we hope that their speed is acceptable. Absolute differences between times are likely
to be small and largely meaningless. However, if we track a benchmark on several
successive tests, we may notice that it is changing: and this may give us a clue to
some underlying problem. A database query may be taking longer; or our hosting
may be less effective. So for our purposes, we'll take the contents of $fred, and store
it in our database.

Using CI to Test Code

[122]

CI's Profiler Class
The profiler class is simply brilliant. You put one line of code somewhere inside a
function in your class. (It works from inside the constructor, so it makes sense to put
it there.) That line is:

$this->output->enable_profiler(TRUE);

If you change your mind, either delete it or change it to:
$this->output->enable_profiler(FALSE);

In exchange for this one line of code, you get a full report on your screen, giving you
details of the time CI took to load itself and your controller, of what was in the POST
array, and of any database queries you have run. At the code development stage, this
is a real help.

If you add in your own benchmarks, it will display those as well. You have to
use special names for your benchmarks—they must end in _start and _end,
respectively, and each pair must otherwise have the same name:

$this->benchmark->mark('fred_start');

and, somewhere else,
$this->benchmark->mark('fred_end');

Chapter 8

[123]

As you can see, the time elapsed between these two benchmarks is then displayed
as 'fred'.

Testing with Mock Databases
Dynamic sites are all about databases. If you are testing them properly, you ought to
test whether your code can actually modify a database. End-to-end tests do this: for
instance, if your test is whether you can log in with the correct username/password
combination, you are probably reading a database to do so.

But testing whether you can update, create, and delete entries on a production
database is a dangerous pastime, because it corrupts your real data!

Remember that CI allows you to declare more than one database, and to swap
between them easily?—see Chapter 4. Using this, it's easy to set up a mock database,
and then add, change, and delete data in it.

You can also use CI to set up and knock down tables, or possibly even whole
databases depending on your host and your permission level. CI's:

$this->db->query('YOUR QUERY HERE');

function allows you to run any SQL query, including something like this:
$this->db->query('CREATE TABLE fred(id INT, name VARCHAR(12),
INDEX(id))');

which will create a new table, or something like this:
$this->db->query("INSERT INTO fred VALUES (1, 'smith')");

which will populate that table with one row of data.

So, with a few lines of code, CI lets you set up a whole new set of mock data to test,
play around with it, test the results, and then delete it ready for next time. You might
then run a set of unit tests on the delete() function to see if the function does what
we expect when it has different 'id' parameters, as described earlier in this chapter.

Now you're going beyond the simple unit test. If we run a test that should have
deleted the value in our table, then we need to check whether it actually has been
deleted. This is easily done with the following code, again using CI's unit testing
class, and its active record class:

$test = $this->db->count_all('fred');
$expected_result = 0;
$test_name = 'tests number of entries left in table after unique
 entry removed';
$this->unit->run($test, $expected_result, $test_name);

Using CI to Test Code

[124]

$this->db->count_all counts all the results in the table, and we know that there
should now be no results there at all. You can just as easily use this sort of code to
check an 'insert' operation, to see if there is one more record in the table afterwards.

Because this is dummy data, which we created specially for the test, we know exactly
what to expect, and it doesn't matter what we do to it. Just remember to destroy and
rebuild the table between tests, otherwise you may get odd results.

Control and Timing
Testing is the heart of our application, so here's just a word about how it can
be controlled.

You'll see from the database specification at the end of Chapter 4 that our application
has a table called tests, and a table called events. Each time the site is asked to do
a test run, it goes through the tests table, looking for two fields: frequency and
last_done. If the frequency is, say, hourly, it checks the last_done field to see if
the test has been done within an hour of the current time. If not, it does the test now,
and updates its own last_done field to the current time.

When the test is done, however, the program creates an entry in the events table.
This gives the ID of the site, and various other bits of information, most notably the
result of the test. This table then provides the statistics we can use to build reports for
ourselves or for clients, sorting out individual tests, or all tests on a given site, etc.

As a reminder of the benchmarking class that we discussed earlier in this chapter:
when you run a test from a function like the one we just discussed, it's a good idea
to put in benchmarks so you know how long the test is taking. Save the time to the
events table. There's a field in this table for timetaken: it's a float data type because
we are dealing in fractions of seconds. While the time taken to run any single test
may be of little interest, changes of pattern when the test is run many times over at
intervals may be interesting: they can show you if the test is speeding up or slowing
down. If, for instance, it takes appreciably longer to log in to your pages, this might
be because your ISP is overloading the server; it might be because you are putting
too much code on your pages; or it might be that your site is becoming too popular
and you need more bandwidth.

Either way, testing regularly and presenting the aggregated results in a usable
format can give you useful early warnings of problems.

Chapter 8

[125]

Summary
We've spent a lot of time on testing. It's not the most exciting of subjects, but if you're
writing websites that matter, it's a great way of making sure you sleep peacefully
at night.

We've seen how CI normally handles errors, displaying them to you as you write
code, but allowing you to turn them off (or divert them to a log file) when your site
goes in to production mode.

We looked at unit tests and CI's tools for handling these. We also looked at
benchmarking, a class which makes it simple you to monitor the execution time of
different part of your program.

The profiler tool is great for showing you a lot of information about your code as you
develop it. CI offers a good suite of tools for developing and testing your own code.

We also looked at ways of testing with dummy database tables, to see whether
database operations have actually taken place as we expected.

We then integrated some external code with CI, to allow us to build web robots and
therefore to run our own 'end-to-end' tests on a remote site.

Using CI to Communicate
The main strength of the Internet is its ability to communicate. This chapter looks at
three ways in which CI makes communication easier.

First, we'll add to our testing toolkit by using CI's FTP class to access remote
files directly.

Then, we'll use the email class to make our site automatically email us when certain
conditions are met.

Lastly, we'll venture into Web 2.0 territory—using XML-RPC to create a private
'web service' that allows our remote sites to take action and return information on a
request form our testing site.

Using the FTP Class to Test Remote Files
File Transfer Protocol (FTP) is a method of transferring files over the Internet. It's
normally used to move files backwards and forwards to your website, using a special
FTP program. It's something most of us only use occasionally, when we are putting
up a new site.

You can, however, automate the whole process painlessly with CI. One use is to
test the integrity of your remote site: are the files still there? As a website owner,
you always face the possibility that someone will tamper with the files on your site.
It may just be your ISP or your server admin, mistakenly deleting or over-writing
something. (I had this happen to me once, when my ISP rebuilt their server and
forgot to reload one of my application files. The file concerned wasn't used very
often, but mattered a lot when it was. This led to an interesting error that took some
time to track down!)

Using CI to Communicate

[128]

As one example of the power of the FTP class, let's build a regular test program, to
check the files on a remote site. A few lines of code are all we need:

function getremotefiles($hostname, $username, $password)
 {

$this->load->library('ftp');
 $config['hostname'] = $hostname;
 $config['username'] = $username;	
 $config['password'] = $password;
 $config['debug'] 	 = TRUE;
 $this->ftp->connect($config);
 $filelist = $this->ftp->list_files('/my_directory/');
 $this->ftp->close();
 return $list;
 }

First, load the FTP library if you haven't already done so. Then, define the
configuration parameters: hostname (e.g., www.mysite.com), username, and
password for your FTP access.

Once connected, CI's FTP class gives you several options. In this case, we've used
list_files() to return a list of files in the /my_directory/ folder. The function
returns an array, and you can easily check this against an array of the files that you
expect to find there. As before, we're trying to list all our tests in a database. So this
time we need to list the FTP URL (or host name), the user name and password, and
instead of a regex, the array of files to check against. To maintain the integrity of this
array, if you store it inside your database, you will need to serialize it before you put
it in, and un-serialize it when you take it out again.

Then it's easy to compare the $remotearray returned by the getremotefiles()
function with the un-serialized $referencearray returned by your database:

function comparefiles($remotearray, $referencearray)
 {
 $report = "
On site, not in reference array: ";
 $report .= print_r(array_diff($remotearray, $referencearray), TRUE);
 $report .= "
In reference array, not on site: ";
 $report .= print_r(array_diff($referencearray, $remotearray), TRUE);
 return $report;
 }

Chapter 9

[129]

The PHP array_diff function compares the second array to the first, so it will list
files present in the first, but not in the second. So, run the function twice, reversing
the order of the array parameters: that way you get two lists, one of what isn't on
your site (but should be) and one of what is on your site (but shouldn't be). The first
should show any files that your ISP has accidentally deleted, the second any files that
may have been added.

The CI FTP class also allows you to upload, move, rename, and delete files. Suppose
that your test above reveals that one of the files in your reference array (let's call it
myfile.php is missing from your site. You can use the FTP class to upload it:

$this->ftp->upload('c:/myfile.php', '/public_html/myfile.php');�

In this example, the local path is given first, and the path on the remote server
second. Optionally, you can specify in a third parameter how the file should be
uploaded (as ASCII or binary.) If you don't, CI makes its own decision based on the
file extension—which will usually be correct. If you are running PHP5, you can add
a fourth parameter to set the file permissions, assuming you are uploading to a
Linux server.

Be very careful about the delete option. As the user guide says, "�������������������� It will recursively
delete everything within the supplied path, including sub-folders and all files�������� "������� .������ Even
writing this paragraph has made me nervous.

Using a combination of the FTP delete and upload functions, you could
automatically update the files on your remote sites. List the files you need to update,
and visit each site in turn, first deleting each old one, and then uploading each
new one.

There is also an interesting 'mirror' function, which allows you to set up a complete
duplicate of a website on another server.

If you are running PHP5, the FTP class also has a function that allows you to change
file permissions.

As you can see, there's plenty of scope for expanding your application from testing
your remote websites to actually maintaining or updating them. You could, for
instance, write code to distribute updates automatically.

Machines Talking to Machines
Again—XML-RPC
The Web 2.0 revolution is largely built on machine-to-machine interfaces, which
allow mashups and APIs and all those good things.

Using CI to Communicate

[130]

This is the basis of 'web services'. You can offer an interface to your site that allows
other people to use it to do something for them. To give a simple example, if you set
up a 'web service' that converts temperatures in centigrade to Fahrenheit, the client
sends in a request with one parameter (the temperature to be converted) and the
server returns the converted value. So, anyone can add a temperature conversion
function that appears to be on his or her own site, but is actually calling yours.

XML-RPC allows two machines to talk directly. The receiving site creates a simple
API (application programming interface). Anyone who wants to talk to it needs to
know that API—what methods are available, what parameters they take, and what
the syntax is—for addressing them. Many major sites use this system: Google, for
instance, allows you to make direct calls to its search engine or to Google Earth via a
published API.

Setting up your own private API is relatively easy, thanks to CI. You need two
websites to set this up and to test it, which makes it a little more complex than most
things. One site (let's call it the 'receiving' site) is the one that offers the API, listens
out for requests, and answers them. (In our example, this is one of the remote sites
that we are trying to test and manage.) The other site makes the request using the
API and gets the answer back. (In our example, this is the test site itself.)

In the XML-RPC protocol, the two sites talk by means of highly structured XML.
(Hence the name XML-RPC—it's short for XML Remote Procedure Call.) The client
sends an XML packet to the 'receiving site' server, stating the function it wants to use
and any arguments or parameters to be passed. The server decodes the XML and,
if it fits the API, calls the function and returns a response, also structured as XML,
which the client decodes and acts on.

Your API consists of the functions that the receiving site offers, and instructions for
how to use them—e.g., what parameters they take, what data type these should
be, etc.

On the receiving site, we create an XML-RPC server, which makes the selected
internal methods available to external sites. These 'internal methods' are actually
just normal functions within one of your controllers: the server's role is to handle the
interface between the external call and the internal function.

There are two sets of problems when you set up an XML-RPC process:

Getting the two sites to talk to each other
Making sure that the data is transmitted in a suitable format

Both rely heavily on multi-dimensional arrays, which machines can take in
their stride, even if humans need to puzzle over them a bit. CI makes it a lot
easier—though it's still quite tricky to get right.

•

•

Chapter 9

[131]

Getting the XML-RPC Server and Client in Touch
with Each Other
First, you have to set up a server on the remote site, and a client on the requesting
site. This can be done with a few simple lines of code. Let's say we are doing the
server in a controller called 'mycontroller' (on the receiving site) and the client in a
controller called 'xmlrpc_client' (on the requesting site).

In each case, start off by initializing the CI classes within the constructor. There are
two; for a client you only need to load the first, for a server you need to load
them both:

$this->load->library('xmlrpc');
$this->load->library('xmlrpcs');

Now, for the server. Close your constructor function, and within the 'mycontroller'
index() function, define the functions you are offering up to the outside world. You
do this by building a 'functions' sub-array (within the main CI $config array) which
maps the names of the incoming requests to the actual functions you want to use:

$config['functions']['call'] = array('function' => 'mycontroller.
myfunction');	
$config['functions']['call2'] = array('function' => 'mycontroller.
myfunction2');	

In this case, there are two named function calls—'call' and 'call2'. This is what the
request asks for. (It doesn't ask for the functions by name, but by the name of the
call. Of course, you can use the same name if you wish.) For each call, you define
a sub-sub-array giving the 'function' within the controller—i.e. 'myfunction' and
'myfunction2' respectively.

You then finish off your server by initializing it and instantiating it:

 $this->xmlrpcs->initialize($config);
 $this->xmlrpcs->serve();

and it is now ready to listen for requests.

Now you need to go to the other website—the client—and set up an XML-RPC client
to make the requests. This should be a separate controller on your client site. It's
quite short:

 $server_url = 'http://www.mysite.com/index.php/mycontroller';
 $this->load->library('xmlrpc');
 $this->xmlrpc->set_debug(TRUE);	
 $this->xmlrpc->server($server_url, 80);
 $this->xmlrpc->method('call');

Using CI to Communicate

[132]

You define the URL of the receiving site, specifying the controller that contains the
XML-RPC server that you want. You load the XML-RPC class, define the server, and
the method you want to use—this is the name of the call you want to make, not of
the actual function you want to use. If the function you are calling needs parameters,
you pass them this way:

 $request = array('optimisation','sites');

As you see, we're passing two here.

Then, you check if a response has been received, and do something with it:

 if (! $this->xmlrpc->send_request())
 {
 echo $this->xmlrpc->display_error();
 }
 else
 {
 print_r($this->xmlrpc->display_response());
 }

The simplest option is to display it; but in a real application you're more likely to
want the machine to analyze it, e.g., by using a regex, and then to act on the results.
For instance, if the result contains an error message, you might want to record the
error in your database, and take action to report it to the human user.

Formatting XML-RPC Exchanges
Let's use a real, if simplified, example. ��� In this section, we will create an XML-RPC
call/response that lets you remotely trigger a database optimization.�

The client we wrote above, is asking for a method known as 'call' and supplying two
parameters: 'optimisation' and 'sites'.

The server on the receiving site maps this request for 'call' onto a function
called 'myfunction'.

Let's have a look at this function. It's basically an ordinary function within the
controller. It attempts to optimize a MySQL database table, and returns 'success' or
'failure' depending on the result.

 function myfunction($request)
 {
 $parameters = $request->output_parameters();
 $function = $parameters['0'];
 $table = $parameters['1'];

Chapter 9

[133]

 if ($this->db->query("OPTIMIZE TABLE $table"))
 {
 $content = 'Success';
 }
 else
 {
 $content = 'failure';
 }
 $response = array(
 array(
 'function' => array($function, 'string'),
 'table' => array($table, 'string'),
 'result' => array($content, 'string'),
),
 'struct');
 return $this->xmlrpc->send_response($response);

 }

Note the $request, set as the function parameter. This contains the $request
array from the client—remember, it had two values, 'optimisation' and 'sites'. CI
has transformed the array into an object, $request. So you can't get the individual
parameters by treating it as an array, instead you have to use the $request
->output_parameters() method of the $request object. This returns an array,
which you interrogate in the normal way.

Using this, we have told the function on the receiving site which table we want to
optimize, the 'sites' table. We've also told it what to call the function ('optimisation').
It adds a further parameter called 'result', gets the value, and returns all three to us.

The result it sends back to the client site looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>function</name>
 <value>
 <string>optimisation</string>
 </value>
 </member>
 <member>
 <name>table</name>

Using CI to Communicate

[134]

 <value>
 <string>sites</string>
 </value>
 </member>
 <member>
 <name>result</name>
 <value>
 <string>Success</string>
 </value>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodResponse>

(Except it's not indented: I did that to make the structure clearer.)

As you can see, our simple three word response (optimisation, exercises, success)
has been wrapped in verbose layers of tags, in a way sadly typical of XML, to tell
a machine exactly what is going on. There are three <member></member> tag pairs.
Each has a <name></name> pair ('function', 'table', 'result' respectively). And each
of these has a <value></value> pair, which includes (as well as the data type) the
actual information we want—i.e. 'optimisation','sites','success'.

Never mind that I don't like it. Computers thrive on this sort of stuff: it is precise,
unambiguous, and easy for a machine to read. This chapter is about computers
talking to each other, not about user-friendly interfaces.

Now, your XML-RPC client function on your calling site can extract the values it
wants and act on them. It's easy to do this with a regex, because each answer is
clearly demarcated by XML mark-up brackets.

Note how CI spares you a lot of fiddling around with angle brackets—you didn't
need to write any of this stuff.

Debugging
As soon as you start to test your client/sever combination, you will probably get
this message:

The XML data received was either invalid or not in the correct form
for XML-RPC. Turn on debugging to examine the XML data further.

Chapter 9

[135]

Turn on debugging, by including the line:

$this->xmlrpc->set_debug(TRUE);

in your client. This allows you to see exactly what your client-receiving site
combination is sending back to you. Be warned, this is where debugging gets
quite frustrating.

There are several places where the exchange can go wrong:

The remote site is not responding properly. (You may have to temporarily
set it to display errors in order to work out why it is not responding. This
is annoying if it is an active site. The additional Catch 22 is that it will then
display—i.e. return as HTML—error messages, which aren't part of the XML
response your client expects, so you will get a second set of error messages,
caused by the first set…) Debugging this may involve quite a lot of FTP
transfers back and forth, until you get it right.
The client code may not be working properly.
You have got the URL wrong. (This needs to be CI's way of addressing the
controller in which the XML_RPC server sits—i.e. http://www.mysite.com/
index.php/mycontroller. If you put all the server code in the controller
constructor instead of in the index function, it will still work, but you need to
address the function you want to call by name—e.g.
http://www.mysite.com/ index.php/mycontroller/myfunction).
The XML interchange may not be exactly right. The set_debug function
allows you to see what is being sent back, but you can spend quite a while
staring at this trying to work out where it has gone wrong. (Believe me…)

However, once you get all this right, you've done something quite clever. You've
built a function in a remote site, and called it remotely.

In other words, you've set up an application that can do maintenance or other
operations on remote sites. If you have several remote sites to manage, you can easily
replicate this across them, allowing you (for instance) to optimize all your database
tables once a day by one action on just one site.

Issues with XML-RPC?
Security is an issue, of course. You would want to password-protect your function
calls, so that the client had to send a password as a parameter before the receiving
site responded. This can be done simply by sending the password as an additional
parameter in the request, and having the called function check it before responding.

•

•

•

•

Using CI to Communicate

[136]

If you were exposing critical functions, you might want the whole thing to take place
behind an SSL layer. Our example looks harmless—you might not mind if a hacker
repeatedly broke in to your site, but all he or she did was tidy up your database
for you each time. On the other hand, it would be a good basis for a Denial of
Service attack.

It has to be said that XML-RPC is frustrating and time-consuming to set up and
debug, even with CI's very considerable help. You are writing and debugging two
sites at once, and the XML format for transmitting data between them can only be
called picky. It doesn't let you get away with even the smallest mistake.

Some would argue that XML-RPC is a superseded technology, with most new
interfaces or APIs being written in more complex languages such as SOAP (which
are even more time-consuming to set up) .

However, for our purposes, XML-RPC is ideal. It allows us to make our remote
websites perform complex internal functions without bothering us with the details.

Talking to Humans for a Change: the
Email Class
We've put together a lot of the building blocks for our web test site. We have a
database of tests, and we've built functions to run different types of tests. We can
access our site and check that we are seeing the right page; we can check that all the
files are where we expect them to be on the remote server. We can automatically run
functions on the site and get it to optimize itself. It's fairly simple to write code that
uses these tools to run a suite of tests whenever we want, either when we log on or
by some automatic reminder, such as setting a 'cron' job on a Linux server to start
our program running at suitable intervals.

But it's not really enough to run tests and just store the results away in a database. If
something is wrong, we need to know as soon as possible.

Here's where CI's email class comes in. It allows us to program our site to send us
emails whenever certain conditions are reached. You might want to send an email
for each failed test, or you might want to run a series of tests, collect the results, and
then send just one email report.

To use the email class, first (as always) you have to load it.

$this->load->library('email');

Chapter 9

[137]

Then we have to set some configuration variables. This is where we can run into
problems, because the class depends on the server that is hosting our code being able
(and willing) to send email for us. Once again, we may have to check with the ISP.
(It's also difficult to test this on a local site, because Xampplite, for instance, may not
be able to offer you a mail server.)

However, once we've sorted out your ISP, we can easily configure the email class.
There are a lot of options, all listed in the on-line user guide. The main ones are:

protocol: does your system use mail, sendmail or SMTP to send emails?
mailpath: where is your system's mail program stored?

You set them like this:

$config['protocol'] = 'sendmail';
$config['mailpath'] = '/usr/sbin/sendmail';
$this->email->initialize($config);

Other options, all of which have sensible defaults, include things like word-
wrapping, character sets, whether you want to send text or HTML emails, and so on.
Setting the options up and getting them working is the only (potentially) difficult
part of using this class.

Once you've loaded the class and initialized it, using it is ridiculously intuitive.

$this->email->from('david@mysite.com');
$this->email->to('someone@myownsite.com');
$this->email->bcc('fred@somewhere.com');
$this->email->subject('Test message');
$this->email->message('Hello world');
$this->email->send();

will send me an email, copied to my client, reporting whatever message I want.

If you're sending more than one email, start each new one with:

$this->email->clear()

just to make sure that you start with a clean slate each time.

You can also use the email class to send attachments. Remember that the attachment
file must already be saved on the server that is sending the email, and you have to
specify where, in terms of the server root file (giving the server address, not the
web address).

Get its address and name like this:
 $path = $this->config->item('server_root');
 $file = $path.'/my_subdirectory/myfile.htm';

•

•

Using CI to Communicate

[138]

then just add this line:

 $this->email->attach($file);

before the $this->email->send();.

This simple CI function is so much easier than trying to write out the full PHP code
to send attachments. It handles all the protocols involved, without you even having
to be aware of them.

If you include the line:

$result = $this->email->print_debugger();

in your code, and print out the $result variable, you'll get a screenful of useful
information, like this:

Your message has been successfully sent using the following protocol:

mail
User-Agent: Code Igniter
Date: Wed, 18 Apr 2007 13:50:41 +0100
From:
Return-Path:
Bcc: fred@somewhere.com
Reply-To: "david@mysite.com"
X-Sender: david@mysie.com
X-Mailer: Code Igniter
X-Priority: 3 (Normal)
Message-ID: <462614219c1a6@upton.cc>
Mime-Version: 1.0
Content-Type: multipart/mixed; boundary="B_ATC_462614219d14d"
This is a multi-part message in MIME format.
Your email application may not support this format.

--B_ATC_462614219d14d
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 8bit
test message
hello world

--B_ATC_462614219d14d
Content-type: text/html; name="myfile.html"
Content-Disposition: attachment;
Content-Transfer-Encoding: base64

(etc. etc.)

Chapter 9

[139]

If something went wrong, then the debug information will return any server error
messages as well. For instance, if I set the delivery method to SMTP without setting
the right host or permissions:

 $config['protocol'] = 'smtp';	

it can't send the message, and it tells me:

You did not specify a SMTP hostname
Unable to send email using PHP SMTP. Your server might not be
configured to send mail using this method.

Bear in mind, however, that 'sendmail' is potentially misleading here—it returns a
success message if it has passed the message on within the server, but this doesn't
necessarily mean that the message has actually been sent. (So if you set the wrong
'mailpath' option, 'sendmail' may report that it has sent the email, when it actually
hasn't.) CI relies on the messages it gets back from the mail sending application, so it
can be fooled. As always with emails, they only way to be sure they have gone is to
check that they've arrived—but that's another story.

CI's email class includes several useful options, all explained in the online User
Guide. For instance, you can set it to send text or HTML format mail—if you chose
HTML there's even a function to allow you to set a separate 'text' message for people
who don't accept HTML email.

You can also set it to use different character sets, and to handle word-wrapping. You
can set batch sizes, if you intend to send a lot of emails to a long mailing list, so that
your server doesn't get overloaded. (Or your ISP doesn't panic and shut you down,
thinking you are a spammer.)

Summary
We've now used CI to build some very sophisticated tools for our website, which
give it some significant functionality.

Firstly, we used CI's FTP class to simplify and automate file transfer operations.
Initially, we've just used this class to check that the files we expect to find on
our site are actually there, and that noting unexpected has been added. This in
itself is a valuable check, as many of the problems websites throw at you involve
unexpected alterations of files, usually by site admins but sometimes by hackers. This
function will check regularly. The CI FTP class also offers the possibility of remote
maintenance and updating of sites.

Using CI to Communicate

[140]

Then we looked at developing our own private 'web services' using CI's XML-RPC
classes. These allow us automatically to call functions on a remote site, pass in
parameters if necessary, and have the results returned to us—just as if we'd been
logged on to the remote site instead of to our test site. We used this to have the
remote site optimize a table in its database, and report back to us. Once again, we've
gone beyond our original plan of simply monitoring the remote sites. Now we are
able to instruct them to check or optimize themselves as well.

Lastly, we looked at the CI email class, which allows our testing site to generate
emails. The CI code is extremely simple to use, and means that our site can notify us
whenever it thinks there is a problem. CI makes it simple to build and send an email,
and even to send attachments.

How CI Helps to Provide
Dynamic Information

We've put a lot of thought into building our test website now, and CI has made it
easy to do some very complex things. We've set up databases, used FTP, built tests,
and started to email the test results. But it's easy to get caught up in techie things
and forget that websites are often judged largely on presentation, on how well they
process data, and how appropriately they display it to human users.

Here are a few CI classes that help with some problems that arise regularly when
you are building a website, particularly when it comes to delivering dynamic
information to your users:

The date helper translates different date formats and helps you cope with
time zones.
The text and inflector helpers provide useful functions to manipulate and
convert strings.
The language class makes it easier to write websites that display the same
information in different languages, depending on user preference.
The table class—saves a lot of tedious <tr><td>s.

You can automatically cache high-load dynamic pages for a faster response.

Each of these can save you a lot of coding time, while making your site look more
professional (and keeping it easier to update).

•

•

•

•

•

How CI Helps to Provide Dynamic Information

[142]

The Date Helper: Converting and
Localizing Dates
You know those websites that expect you to understand machine dates? MySQL's
native 'timestamp' format, for example, is very useful, but it looks very careless to let
your site users see things like:

20070124161830

or even:

2007-01-24 16:18:30

Of course, most people can work out what it means, but it gives your site an
unprofessional and unfinished air. CI comes to the rescue with its date helper. This is
loaded with:

$this->load->helper('date');

and immediately gives you access to a lot of useful functions. See the online User
Guide for a full description.

Dates can be specified in many different ways. CI's standard_date() function gives
you ten ways of displaying the same date:

1: atom		 2006-12-31T11:34:44Q

2: cookie	 Sunday, 31-Dec-06 11:34:44 UTC

3: iso		 2006-12-31T11:34:44+0000

4: RFC 822	 Sun, 31 Dec 06 11:34:44 +0000

5: RFC 850	 Sunday, 31-Dec-06 11:12:34 UTC

6: RFC 1036	 Sun, 31 Dec 06 11:34:44 +0000

7: RFC 1123	 Sun, 31 Dec 2006 11:34:44 +0000

8: RFC 2822	 Sun, 31 Dec 2006 11:34:44 +0000

9: RSS		 Sun, 31 Dec 2006 11:34:44 +0000

10: W3C		 2006-12-31T11:34:44Q

All you need to do is specify which you want. For instance:

$time = now();
echo standard_date('DATE_RFC822', $time);

Chapter 10

[143]

There are also functions to convert between different types of date/time values.
Their names are self-explanatory, and the exact syntax is described in the online User
Guide. They enable you to do quite clever conversions very simply.

For instance, this code:

function converttimes()
{
$this->load->helper('date');
$mysql = '20070101120000';
$table = '';
$table .= "<table><tr><td width='50%'>Start with MySQL
time<td>$mysql</td></tr>";
$utime = mysql_to_unix($mysql);
$table .= "<tr><td>now convert to unix timestamp<td>$utime</td</tr>";

$htime = unix_to_human($utime);
$table .=	"</td></tr><tr><td>then back to 'human' time<td>$htime</
td></tr>";

$ttime = gmt_to_local($utime, 'UP25');
$table .=	"</td></tr><tr><td>now convert unix stamp to local time in
Tehran<td>$ttime</td></tr>";

$ltime = unix_to_human($ttime);
$table .=	"</td></tr><tr><td>and say that in human time <td>$ltime</
td></tr>";
$table .= "<table>";
echo $table;
}

produces this result:

Start with MySQL time				 20070101120000

now convert to unix timestamp			 1167652800

then back to 'human' time			 2007-01-01 12:00 PM

now convert unix stamp to local time in Tehran	 1167661800

and say that in human time 			 2007-01-01 02:30 PM

There's a lot of useful code available to you behind these functions, and they make
international time zones, in particular, much easier to use.

The date helper also has timezone_menu(), a function that generates a drop-down
menu of time zones. You can use this in conjunction with a database to allow site
users to select a time zone, and later to present all their time references in their own
'local' time. In exchange for writing:

echo timezone_menu();

How CI Helps to Provide Dynamic Information

[144]

you get the following screenshot:

It looks at first as if CI offers an automatic way to handle time zones too, in the
date helper's now() function. The User Guide suggests that you set the 'master time
reference' in your config file to 'local' or 'gmt', using:

$config['time_reference'] = 'local';

Local is the default. If you set it to 'gmt', the code appears to return the system time
(if there is one) based on the PHP mktime() function; if this is not valid, or you set
the config file to 'local', it returns a time based on the time() function.

However, both of these are dependent on your server: it must be set to an accurate
time and its default time zone must be set. (You can check this with phpinfo().) But
the time zone may not be set, and your server may not be in the same time zone as
you: this is quite common with large companies, for example.

So CI itself doesn't actually know what your time zone offset is, though it may be
able to get your server's offset. Therefore, if you used timezone_menu() to capture
users' time zone preferences, you can't just rely on the date helper's now() function to
translate GMT times to their local times. You will need to look up their preferences,
and write separate code to translate times whenever you want to display them.

Chapter 10

[145]

Working with Text: the Text Helper and
Inflector Helper
The text helper has a series of functions that help you to manipulate text in various
ways. See the online User Guide for full details. I'd just like to show you a few of the
useful things you can do.

The word_limiter() function intelligently truncates strings to a length you set.
word_wrap() wraps text to a length you specify. And word_censor() replaces
words you don't want to see with harmless equivalents.

There are also functions to convert ascii_to_entities() and back again, which
may help prevent those times when text in formats like MS Word displays oddly if
you copy it to a web page.

Inflector helper functions will change words from singular to plural or vice versa,
though they are caught out by irregular forms like 'sheep/sheep' and 'child/
children', and would make some mistakes, e.g., turning 'day' into 'daies'. They can
also 'camelize', or underscore spaces between multiple words, and then turn them
back again.

You can have fun with these, for instance, this code:

function converttext()
 {
 $this->load->helper('text');
 $this->load->helper('inflector');
 $mytext = "Mr Bill Gates is a man I like. He is a very clever man
 and writes superb software";
 echo "$mytext
";
 $disallowed = array('like', 'clever', 'superb');
 $string = word_censor($mytext, $disallowed);
 echo "Censored, this might read: ";
 echo "$string
";
 $mywtext = word_limiter($mytext, 3);
 $mytext = underscore($mywtext);
 echo " His name could be written like this $mytext";
 $mytext = camelize($mywtext);
 echo "or like this $mytext";
 }

How CI Helps to Provide Dynamic Information

[146]

will give you this result:

Mr Bill Gates is a man I like. He is a very clever man and writes superb software
Censored, this might read: Mr Bill Gates is a man I ####. He is a very ######
man and writes ###### software
His name could be written like this mr_bill_gates…or like this mrBillGates…

These functions can be extremely useful if you are taking in text from other sources
and need to convert it in one way or another, or to censor it. They may save you a lot
of time spent writing regexes.

Going International: the Language Class
If you are writing a website that may be viewed in more than one country, CI can
present pages in more than one language for you. It works like this:

Firstly, you identify the text presented to your users that needs to be translated. Let's
go back to one of the first examples of displaying dynamic data that we discussed in
this book. Your welcome page might be called by code in a model, which says:

 function hello($name)
 {

 $data['mytitle']= 'Welcome to this site';
 $data['mytext']= "Hello, $name, now we're getting
 dynamic!";
 $this->load->view('testview', $data);
 }

The strings assigned to the $data array are the messages displayed to the user:

But you might know that the user was a German speaker—perhaps because of
the location of his or her server, or possibly because he or she was logged in, and
had stated a language preference. It would be nice if you could greet him or her in
German. CI provides an easy method to do this.

Chapter 10

[147]

First, you need to set up a language file. If you look in the system folder, you'll see
there already is a language folder with an English sub-folder. This in turn contains
a series of files—e.g., unit_test_lang.php. This is a PHP file that simply defines an
associative array of expressions to be shown to users:

<?php
$lang['ut_test_name'] = 'Test Name';
$lang['ut_test_datatype'] = 'Test Datatype ';
$lang['ut_res_datatype'] = 'Expected Datatype';
$lang['ut_result'] = 'Result';

// etc etc///
?>

The array values are the expressions you want displayed, the array keys are
whatever shorthand you want to use to identify them to yourself. The filename must
end with '_lang'.

We need to set up our own, in each of the languages we want to show. Let's call the
first one welcome_lang.php and save it in the system/language/English sub-
folder. It should look like this:

<?php
$lang['welcome_title'] = 'Welcome to this site';
$lang['welcome_text1'] = 'Hello ';
$lang['welcome_text2'] = ' now we're getting dynamic';
?>

The array keys can be anything you like: but it's a good idea to prefix them, say with
'ut' for the unit test language array, and 'welcome' for the array we're writing now.
They all go into the same base array, so if you inadvertently enter two values with
identical keys, the second will overwrite the first.

The original function that set up the page needs to be altered. Firstly, you need to
load the language file. In this example, I've included it in the function, but normally,
it makes more sense to do it inside the class constructor. Notice that although the file
name ends in _lang (welcome_lang.php), you omit this suffix when you load it (i.e.
you load 'welcome', not 'welcome_lang'). Secondly, you use the array keys instead of
actual text—that is, to say:

 function hello($name)
 {
 $this->lang->load('welcome');

 $data['mytitle']= $this->lang->line('welcome_title');
 $data['mytext']= $this->lang->line('welcome_text1');
 $data['mytext'].= $name;

How CI Helps to Provide Dynamic Information

[148]

 $data['mytext'].= $this->lang->line('welcome_text2');
 $this->load->view('testview', $data);
 }

But this only gives us the same page as we had before: it's still in English. If we want
to allow translation into German, we need another language file. Firstly, we create a
new subfolder: alongside system/language/english we create system/language/
german. In the new folder, we save a file with exactly the same name as the English
version: 'welcome_lang.php'. (Not willkommen_sprach.php—sorry, just my little joke.)

This file is identical to the English original—on the left-hand side of the array, at
least. The keys are the same, but the array values on the right-hand side now have to
be in German.

<?php
$lang['welcome_title'] = 'Willkommen auf dieser Web Seite';
$lang['welcome_text1'] = 'Guten tag ';
$lang['welcome_text2'] = 'jetzt sind wir dynamisch!';
?>

(I'm afraid that you have to do the translation yourself—CI doesn't do that for you!)

There's one thing left to do. When the original 'hello' function loaded the
language file:

$this->lang->load('welcome_lang');

it did not specify which language, so the default was English. As you might expect,
the default language is specified in the 'config' file:

$config['language']	 = "english";

To get German, the language loading expression in the 'hello' function should
additionally specify the name of the folder in which the German array is saved.
(Logically enough, this is 'german'.)

So the function now says:

 function hello($name)
 {
 $this->lang->load('welcome', 'german');

 $data['mytitle']= $this->lang->line('welcome_title');
 $data['mytext']= $this->lang->line('welcome_text1);
 $data['mytext'].= $fred;
 $data['mytext'].= $this->lang->line('welcome_text2);

 $this->load->view('testview', $data);
 }

Chapter 10

[149]

and the resulting page looks like this:

All we need to do now is to ensure that our function loads the right
language dynamically.

Assuming we've detected the user's language preference, and stored it in the variable
$user_language_pref, we need something to load the language files conditionally,
like this:

if($user_language_pref == 'german')
{$this->lang->load('welcome', 'german');}

elseif($user_language_pref == 'french')
{$this->lang->load('welcome', 'french');}

// etc etc

It takes a degree of self-discipline to write a code like this. You have to remember
never to put actual text into your code, but instead to create an entry in a language
file each time. But once you've done that, all you have to do is copy the language
file and give it to someone to translate into your target language(s), and your site is
magically available in translation. If you change the wording of the site, you only
have to change the language files. If you have used some expressions more than
once, you don't have to hunt through the pages looking for each example.

If your site uses long stretches of complex text, it becomes less viable to translate it in
this way. But for the 'boilerplate' text scattered around every website, CI's language
class works well and makes your site look much more impressive.

How CI Helps to Provide Dynamic Information

[150]

Making HTML Tables the Easy Way: the
Table Class
I've been using CI for some months now, but I keep stumbling on functions that
make life easier.

Here's a good example, for anyone who spends a lot of time writing things like:

echo "<tr><td>$value1</td><td>$value2</td></tr>";

CI's table class allows you to auto-generate HTML tables. Let's display details of
some of the tests we've run. You start off by loading the class, as always. Then you
can specify the table data as an array, like this:

$this->load->library('table');
$data = array(
 array('name', 'type', 'time'),
 array('test 1', 'ping', '1166627335'),
 array('test 2', 'ping', '1166627335'),
 array('test 3', 'ete', '1166702400')
);
echo $this->table->generate($data);

But the function really comes into its own when you automatically generate the data
directly from the object returned by a database query. For instance, this short piece
of code:

function dotable()
{
 $this->load->database();
 $this->load->library('table');
 $query = $this->db->query("SELECT name,type,time FROM events");
 echo $this->table->generate($query);
}

Chapter 10

[151]

gives you the query results in a properly formatted HTML table. I can't resist
showing it, though the default format is dull!

That's an amazing saving of your time—just four lines of code returns a query and
wraps it up for you in HTML. In fact, a small tear comes to my eye when I think of
all the time I used to spend writing:

<table>
<tr><td>$variable1</td><td>$variable2</td></tr> //etc.

While, as you can see, CI's basic table layout isn't wonderful, you can set your own
template, using CSS styles if you wish, and the function will faithfully follow that.
The template is an array inside the 'table' class, so you will need to reset it each time
you call the class.

$tmpl = array (
 'table_open' => '<table border="0"
cellpadding="4" cellspacing="0">',

 'heading_row_start' => '<tr>',
 'heading_row_end' => '</tr>',
 'heading_cell_start' => '<th>',
 'heading_cell_end' => '</th>',

 'row_start' => '<tr>',

How CI Helps to Provide Dynamic Information

[152]

 'row_end' => '</tr>',
 'cell_start' => '<td>',
 'cell_end' => '</td>',

 'row_alt_start' => '<tr>',
 'row_alt_end' => '</tr>',
 'cell_alt_start' => '<td>',
 'cell_alt_end' => '</td>',

 'table_close' => '</table>'
);

$this->table->set_template($tmpl);

There is a default template array, which looks like this, on which the function bases
its design. Note that there are two sets of row definitions (row and row_alt), in case
you want the colors of the rows to alternate.

If you submit revisions to part or all of the template, the function reacts accordingly,
generating different HTML markup.

You'll have noticed that the template is just an array, and you submit revisions
by revising the values for each key. For instance, if you have a CSS file defined
somewhere with a class called mytable, you can refer to that:

 $tmpl = array ('table_open' => '<table class="mytable">');

You don't have to alter every value: those you don't alter remain at the
default setting.

Now your table magically jumps out in the format you specified.

Caching Pages
By now, we're writing some pretty complex code. The server has to sit down and
puzzle out each dynamically generated page. While it's simple for you to write a
function like dotable() above, the poor old server has to do more work as a result.

Sometimes, this can lead to your pages taking longer to load than you would like.
There may be no way round this. If you're writing a report that will be different each
time you write it, then you just have to wait. However, you may be generating a
page that will stay the same for a while. A blog, for instance, stays the same until you
put another entry on it. If your blog gets a thousand views a day, on a day when you
didn't add a new posting, each view will be the same, and it's a waste of time for the
system to re-generate the same page over and over.

Chapter 10

[153]

The way round this is to cache the page. You generate the page once, and the HTML
produced is saved in a 'cache' file with a timestamp, as well as being returned to
someone's browser for display on their screen. Then, when the next viewer requests
that page, the system checks to see how long ago it was last generated and saved. If
this is within a time limit you set, it serves up the cache page. If not, it generates the
page from scratch.

Sounds like some pretty complex coding is required here. Except if you're using CI.
If you are, you need to do two things:

Find the /system/cache file in your site. It should be empty, except for an
index.html file. Make sure the folder is writeable—i.e. permissions set to 666, if
you're on a Linux system.

Insert, somewhere in a controller function that generates an HTML page, the line:

$this->output->cache(5);

where 5 is the number of minutes you want your cache to persist before the page
is regenerated.

That's it. If you now load the function, you'll see the page load as usual. If you now
look at your /system/cache folder, however, you'll see a new file in there, with a
meaningless title.

Open this up (in a text editor) and you'll see it contains the HTML code for your
page, plus a timestamp. If you request the same page again before the timestamp is
five minutes old, you'll get the cached page. If you wait longer and the cache file is
out of date, your next request will automatically delete it and replace it with a
newer version.

If you change your mind about caching the page, delete the this->output
->cache(5) line from you controller, and your page will be served up afresh each
time. (The last cached file will stay in your /system/cache folder until you delete it
manually.) If you want to continue caching, but accidentally delete a cache file at any
time, don't worry; the system will create a new one when that page is next called.

CI makes this is so quick and simple that it is tempting to cache every page! Just
remember that you don't always want to do this: it's best for high load pages that
don't change very often, but may not help much on others.

How CI Helps to Provide Dynamic Information

[154]

Summary
CI offers you lots of goodies to make coding easier and your websites more
professional. This chapter looked at just five of them:

The text and inflector helpers provide useful functions to manipulate and
convert strings.
The date helper allows you to convert between different date formats and
also to cope with time zones.
The language class makes it easier to write multi-lingual websites, which
respond to user preferences. Alas, you still have to do the translation!
The table class lets you output properly formed HTML tables, directly from a
database query if you need to.
Automatically caching high-load dynamic pages provides a faster response.

•

•

•

•

•

Using CI to Handle Files
and Images

This chapter looks at several useful CI functions and helpers. Each of them is a
good example of how a few lines of CI code give you seamless access to a range of
applications and actions that would take lots of specialized knowledge to code from
scratch. In many cases, CI is simply providing an interface to code classes that were
already out there, and which you could download from PEAR or some other source.
But CI gives you a standard interface: you just treat it as native CI code, and the
framework does all the interfacing stuff for you.

Let's look at five activities in this chapter:

The file helper makes it easier to write to, and read from files.
The download helper makes it easy for your website to download files direct
to the user, rather than displaying them as HTML.
The file upload class works the other way, allowing users to put files on your
site, with built-in security precautions to limit what they can do.
The image manipulation class allows you to do several useful things with
images, and we'll look at how to resize them and watermark them.
Lastly, the Zip class allows you to compress files before your users
download them.

Each of these examples hides a lot of clever coding and allows you to write practical
applications with a minimum of fuss. In many cases, they add extra code to make the
activity more robust.

•

•

•

•

•

Using CI to Handle Files and Images

[156]

Let's look at them one by one:

The File Helper
PHP's syntax for reading and writing files is not easy to grasp at first sight. CI's file
helper contains a few useful functions, which act as a wrapper for PHP's own file
handling operations. Start off as always by loading the helper:

 $this->load->helper('file');

Then life gets a lot simpler. For instance, to write to a file, all you need to know is:

The location of your file.
The text you want to write to it.
The mode in which you want to open the file. Modes are defined in the PHP
manual (see the page on 'fopen'). They include 'r' for read, 'w' for write (write
to the file, overwriting data already there), and 'a' for append (write to the
file, adding on to existing data). In each case, adding a '+', say 'a+', opens
the file for both read and write operations. 'a' and 'w', but not 'r' or 'r+', also
create the file, if one is not already there.

Then you use these three pieces of information as parameters to the
write_file() function:

write_file('e:/filetest.txt', 'hello world', 'a+')

This is simpler and more intuitive than PHP's two-step code:

 if ($fp = fopen('e:/filetest.txt','r+'))
 {
 fwrite($fp, 'hello world');
 }

Once again, the CI code adds a little extra: it automatically locks the file before
writing and unlocks it afterwards. The helper returns 'FALSE' if the file operation
doesn't take place, so you can use it to report success or failure. You have to specify a
title for your file, but if you don't specify a filepath, it is placed in the web root folder
for your site, where your main index.php file is.

Of course, any folder in which you create or write to a file, must have
write permissions set. Remember also that if you are running on
a Windows system you have to use forward slashes — /— to describe
your filepath.

•

•

•

Chapter 11

[157]

In our application, we can combine this helper with the database utility class. This
allows us to create, back up, repair, and optimize databases and tables, though only
on MySQL and MySQLi databases. Mix it in with the file helper, and you create a
neat backup routine.

$this->load->dbutil();
$backup =& $this->dbutil->backup();
$this->load->helper('file');
write_file('e:/mybackup.gz', $backup);

The above code writes the latest version of our database to a file on the server.

Reading a file back again is equally simple:

$content = read_file('e:/filetest.txt');

There's also a function that returns an array of all files and/or folders in a
given directory:

$filenames = get_filenames('e:/')

although, if you use it in a directory with many files, you may find that PHP times
out before it can list them all. You can use this in a simple piece of code to check
that the files or folders actually in a folder are what you expect. Start by using the CI
function to find the files actually present, and a reference array of files you expect
to find, then use array_diff() to compare them. Given two arrays, array_diff()
tells you what values are in the first that are not in the other, so you have to use it
twice, putting each array first.

 //list files actually found
$files_there = get_filenames('e:/rootfolder/system/application/

 controllers');

 // list files we expected
 $files_expected = array('start.php', 'index.php');

 // any found that we didn't expect?
 $difference = array_diff($files_there, $files_expected);
 echo "
Missing files are:";
 print_r($difference);

 // any expected that we didn't find?
 $difference = array_diff($files_expected, $files_there);
 echo "
Extra files are:";
 print_r($difference);

Using CI to Handle Files and Images

[158]

Lastly, but far too horrible even to think about, there is the delete_files()
function. This deletes all the files within any directory you specify, so that:

delete_files('c:/mydirectory/');

would delete everything in mydirectory. If you add the optional parameter TRUE,
as in:

delete_files('c:/mydirectory/', TRUE)?

it will also delete all subfolders in that directory Use with great care: just
imagine what:

delete_files("c:/", TRUE)

might do!

The Download Helper
The download helper only has one function, but it complements the file helper very
nicely. You might create a file on a website and then want to serve it up to the reader
as a file—a text file, for example—rather than converting it into a web page.

A good example would be a database backup file, like the one we created just now
for our application.

To recreate the database if it crashes, we need a text file in MySQL's own format. It
isn't much use to us to see this on the screen:

Chapter 11

[159]

We need to find a way of downloading it as a file. In other words, if we're working
on a Windows system, we want to see this dialogue:

In order to code this over an internet connection, you must specify the type of
page you want in the HTTP headers. CI's download helper does this for you in the
background. Load the helper with:

$this->load->helper('download');

and its single method is used like this:

force_download($name, $data);

where $name is the name you give to the downloaded file and $data is the file
contents. If you want to download an existing file, you have to read it into a
string first:

$data = file_get_contents("e:/mybackup.txt");
$name = 'backup.txt';
force_download($name, $data);

The file $data can now be used directly to recreate the MySQL database. You can
also use this helper to download reports directly, rather than forcing users to scrape
them off the screen.

Using CI to Handle Files and Images

[160]

Behind the scenes, the helper takes care of identifying the MIME type and setting
HTTP headers. It relies on one of the 'config' files, system/application/config/
mimes, which is also used by the Upload class that we'll look at next. This config file
stores an array of MIME types and the appropriate HTTP extensions—e.g.:

'rtf' => 'text/rtf',
'text' => 'text/plain',

which saves you having to remember them!

If you regularly use file types that aren't included on CI's list, you can easily add
them to the 'config' file.

The File Upload Class
Sometimes, you want to allow users of your site to upload files. These may be text,
or images, or more exotic file types like MP3 audio or MPEG video. This is a more
complex process than the file downloads we just discussed, but CI's file upload class
takes care of most of the work for you. It also looks after some of the security issues.
However, you should always think twice before allowing anyone to upload files to
your site, and you may want to protect the upload page to prevent unauthorized
users from doing it.

First, you need to allocate space to store the uploaded files—a folder or directory on
your server. This must be set with the correct permissions, allowing users to write to
it. (i.e. 777 on a Unix/ Linux system). Let's assume you call this folder uploads, and
put it in your web root folder.

CI's file upload class is loaded with:

$this->load->library('upload');

Then you need to do three things:

Set defaults
Write a controller to handle the uploads
Provide your user with an upload form and a 'success' form

Let's take them in this order. First, set a series of defaults. You do this by creating a
$config array.

Let's say you want to set the path to the upload directory you just created. For this,
you need to say:

$config['upload_path'] = 'uploads';

•

•

•

Chapter 11

[161]

This line can either be in the controller you're about to write, or you can create a
config/upload folder to contain it (this would be system/application/config/
upload.php).

<?php if (!defined('BASEPATH')) exit('No direct script access
allowed');
$config['upload_path'] = 'uploads';

?>

It's important to grasp the difference between these two ways of setting your
defaults. If you set the defaults from the config/upload file, you don't need to
specifically initialize the file upload class. Just load it and it will find the defaults
for itself.

However, if you leave the defaults in the controller, you need to specify where they
are when you load the class, using a second parameter to the loading function,
like this:

$this->load->library('upload', $config);

where $config is the name of your array of defaults. (Don't try to set some defaults
from the config/upload file and some from the controller!)

OK, so what's this fuss about defaults? So CI sets sensible defaults and you don't
need to worry about them, right? Yes, but in this case you do. There are several
important ones:

The location of your upload file: CI doesn't make an assumption about this,
you have to tell it.
The types of file you want to allow your users to upload. This is set like this:

	 $config['allowed_types'] = 'gif|jpg|png';

where the acceptable file types are specified with the pipe operator (|)
between them. This setting would allow your site to upload the most popular
image file types but would not allow it to upload audio files, for example.
Setting this is a basic security measure: if you only want images to be
uploaded, don't allow people to upload executable files or large MP3s.
Note that you must set a value before a file type can be uploaded: the default
setting (i.e., no setting) allows no files to be uploaded.

•

•

Using CI to Handle Files and Images

[162]

Max_size: it's sensible to set a limit on the maximum size of file, in kilobytes,
that can be uploaded. You don't want malicious users filling up all your
space. The default setting is 0, which sets no limit.
Overwrite: if you already have a file in your uploads folder with the same
name as the one that a user is uploading, should the old one be overwritten
and lost forever? This depends on what your site is doing and why you are
allowing uploads. CI defaults to 'FALSE', which means it doesn't overwrite
the old file and the new file is saved under a new name. Explicitly set this
default to 'TRUE', if you want new files to overwrite the old.
Note that CI doesn't automatically tell the user that it has renamed his or her
file, which may possibly be confusing: see below for how to get at reports on
the process.
You can also set defaults for the size, width, and height of images, for
encrypting the file, and for trimming blank spaces from its title.

Now that you have decided on your defaults, you need an upload controller. This is
simple. Its role is to initialize the upload class, receive an upload from a user form,
and then decide if it has been successful. If yes, it displays a report; if no, it returns to
the upload form with a user message. At its simplest, it need only include one active
function, do_upload(), like this:

<?php
/*constructor function to initialize controller and load the file
upload class, plus the two other helpers it needs */

class Upload extends Controller {

 function Upload()
 {
 parent::Controller();
 $this->load->helper(array('form', 'url'));
 $this->load->library('upload');
 }

/*now the function which does all the work!*/

function do_upload()
 {

 if (! $this->upload->do_upload())
 {
 $error = array('error' =>
 $this->upload->display_errors());

 $this->load->view('upload_form', $error);
 }
 else

•

•

•

Chapter 11

[163]

 {
 $data = array('upload_data' =>
 $this->upload->data());

 $this->load->view('upload_success', $data);
 }
 }
}

This function needs an upload_form view, and an upload_success view. To build
the first, use the form helper to build a normal form, pointing to the do_upload
function of our 'upload' controller: but instead of opening it with:

echo form_open('upload/do_upload')

(as we did in the forms we built in Chapter 5), you open it with the form helper's
multipart function:

echo form_open_multipart('upload/do_upload');

(Remember that we are writing code to produce HTML markup, so we need to echo
it to the screen.)

Then, instead of the form helper's form_input function, use the
form_upload function:

echo form_upload($data);

These two lines of code take care of a lot of really tedious stuff for you.

Add as normal a submit button, and close the form.

echo form_submit('mysubmit', 'Submit Post!');

Pass your $view variable to a view and load it. Your view should also echo the
$error variable, which the do_upload function passed when it loaded the view.

echo $error;

You should now see something like this:

Using CI to Handle Files and Images

[164]

Clicking on Browse allows the user to view the files on her or his own (local)
computer, not your server. Once (s)he has selected a file, clicking on upload will
call the upload controller, and the file will be transferred to the upload folder on
your server.

Let's say I try to upload a text file. (Remember that our allowed file types are limited
to 'gif | jpg | png'.) I now see:

CI is reporting back the type of error to me: this is the $this->upload->display_
errors() function in the controller at work, adding an extra variable to the view.

You can also have CI report data on successful uploads to you. As you see, the
controller we wrote just now calls a view called upload_success, if the upload
is successful. The data passed to this view is the contents of the function
$this->upload->data. This gives you a full array of information about the
upload process: possibly more than you would want to display.

Let's say I uploaded a file called waltzer.jpg: the default report looks like this:

Chapter 11

[165]

If you are using your site to create a rival to Flickr, for example, then this amount of
information might confuse users who have uploaded their photographs! However,
you can easily filter out any information that you don't want in the upload controller.

Please note, by the way, that I set the 'overwrite' default to 'FALSE' when configuring
the file upload class to write this example. I then used the code to upload the image
file waltzer.jpg—twice.

The previous screenshot is CI's report on the second successful upload. You'll see
that the file has been renamed waltzer1.jpg. If I look in my upload directory, I can
see both the original waltzer.jpg and the new waltzer1.jpg file. Depending on
your application, you might want to compare the values for raw_name and orig_
name and inform the user that the file name has been changed.

CI does not compare the two files, only their names. If you are allowing several users
to upload files, it is quite possible that two of them will inadvertently use the same
filename for different files, and you may not want to lose the first. On the other hand,
if you are using the site to upload reports that always have the same name, you may
prefer only to have the latest version stored on the site—in which case overwriting is
a simple way of saving space.

Here's that image, by the way. We're going to do a lot more with it in the
next section.

CI's Image Class
If you are allowing users to upload images to your site, you also need to look at
CI's Image Manipulation class. This works with the three most popular image
libraries for PHP: GD/GD2, NetPBM, and ImageMagick. (Use phpinfo() to find
out which of these your server supports.) Image watermarking only works with
GD/GD2, though:

Using CI to Handle Files and Images

[166]

The image manipulation class allows you to perform four basic functions
with images:

Resize: You may want to fit them into a standard size on your screen; or you
may want to cut them right down to 'thumbnail' images.
Crop
Rotate
Watermark (only available with GD/GD2): This is often used to put a
copyright notice on an image, so that people can't simply download it from
your site and pass it off as their own work.

Probably the most useful of these functions is resizing, so we'll look at that in a little
detail. Cropping and rotating are less useful because you can't do them meaningfully
unless you can see the image on the screen. To do this, you need some sort of user
interface that allows the user to specify what she or he wants to do and control the
way CI implements these functions, and you'll have to build this for yourself!

Let's say you've uploaded your waltzer.jpg image, using the file upload class we
just discussed, to your /uploads folder. (Permissions for this folder have to be set to
777 for you to upload—and also for you to manipulate the images, because CI needs
to write the manipulated result back to the folder.)

First, load the library:

$this->load->library('image_lib');

Then, you need to set a few configuration details. (As with the file upload class,
you can either do this in your code, or in a separate system/application/config/
image_lib.php file.)

There are several preferences you can set and they are listed in the online User
Guide. Perhaps the most important are:

Which image library you are using. The default is GD2, so if you're not using
that in your PHP installation, you would need to specify the one you are
running, e.g., $config['image_library'] = 'ImageMagick' (You'd
also have to supply a path to the ImageMagick library using:
$config['library_path'] = '/mypath';.)
The image you want to manipulate. This should be the path (relative to your
site's root folder) and filename.
The size you want the image to be after processing—where 'x' is a number
of pixels, the width is set by $config['width'] = x;, and the height by
$config['height'] = x;.

•

•

•

•

•

•

•

Chapter 11

[167]

These are enough to resize your image, overwriting the old image file with the
resized image. The code looks like this:

function do_image($image_name)
{
 $this->load->library('image_lib');
 $config['image_library'] = 'GD';
 $config['source_image'] = "$image_name";
 $config['width'] = 75;
 $config['height'] = 50;
 $this->image_lib->initialize($config);
 if(!$this->image_lib->resize())
 {echo "failed";}
 else{echo 'success!';}
}

The library can do some other clever things as well. If you don't want to overwrite
the original image, specify a new name and filepath for the new version, by adding:

 $config['new_image'] = 'newfolder/newname.png';

Or, if you want to create a thumbnail of the image, simply add:

$config['create_thumb'] = TRUE;

instead. This has the effect of re-naming the new resized file with a default suffix
of _thumb, so that waltzer.jpg becomes waltzer_thumb.jpg. (You can alter the
default suffix as well—see the User Guide.) So you then have two files in the same
folder: the original and the thumbnail.

Note that the thumbnail setting doesn't do anything else—you still have to set the
size you want it to be.

Here's the image, shrunk right down to 75 by 50 pixels:

An additional function of the image class allows you to watermark images. So,
if you've put your own brilliant photograph on your website, you can also add a
copyright notice to it.

Using CI to Handle Files and Images

[168]

Once again there are a lot of options, fully explained in the User Guide, but the basic
code is simple. Initialize the class, tell it which image you want to watermark and
what you want the watermark to say, and call the watermark function.

function wm_image()
{
 $this->load->library('image_lib');
 $config['source_image'] = 'uploads/waltzer.jpg';
 $config['wm_text'] = 'Copyright 2007 - David Upton';
 $config['wm_type'] = 'text';
 $this->image_lib->initialize($config);
 if(!$this->image_lib->watermark())
 {echo 'failure to watermark';}
 else {echo 'success';}

}

(The wm_type option set to text allows you to watermark with text. Otherwise, set
this option to overlay, and supply an image, which will be superimposed on your
original image.)

This is what the image looks like now.

My actual code was slightly more complex than the example shown above, so that
I could control the size and positioning of my watermark to make it more easily
visible on this page. The default code shown above would be adequate for most
purposes, but the watermark comes out too small to be clear on a printed page. See
CI's online User Guide for more information about working with external fonts.

This class is beautifully simple to use, and it's only when you look at the underlying
code in the image manipulation library (in the file system/libraries/Image_lib.
php) that you realize how much complex coding CI has spared you!

Chapter 11

[169]

Easy File Compression with the CI Zip
Class
If you're moving around large files like images, you might need to compress them.
CI contains a handy library for doing this.

Let's take the photograph we've already used: waltzer.jpg. It's on our
/uploads folder.

As always, you start by initializing the Zip class. Once you've done that, you have to
tell CI which file you want to zip, and create an archive to put it in. Then you use the
read_file function to read it in and zip it, and the download function to download
it to your desktop.

function zip_image()
{
 $this->load->library('zip');
 $this->zip->archive('my_backup.zip');
 $path = 'uploads/waltzer1.jpg';
 $this->zip->read_file($path);
 $this->zip->download('my_backup.zip');
}

The CI Zip encoding class is more complex than this and allows you several options.
As usual, they're all set out in the online User Guide. But this should give you an
idea of how easy CI makes it to zip downloads from your site, minimizing the
bandwidth they consume and saving time for your users.

Summary
This chapter collects together a few CI helpers and classes with similar themes. They
help you to:

Write and read files on your system, with minimal coding, while CI locks and
unlocks the files in the background.
Download files rather than show them as HTML on the screen, with CI
providing the HTTP headers and worrying about MIME types for you.
Upload files to your site, allowing you to specify security constraints like the
size and type of files you allow.
Easily manipulate images, to resize or watermark them.
Compress your files before you download them to your users.

•

•

•

•

•

Using CI to Handle Files and Images

[170]

This to me is what frameworks are all about. Instead of a lot of tedious coding, they
let you get on with building an application that works. They give you a standard and
easy interface, and they worry about the details for you.

Production Versions,
Updates, and Big Decisions

The great day has come. Your development site is running well enough on your
local development for you to transfer it to a production site hosted on a remote web
server. It should be easy to do this. Copy over all the files, including the whole of the
system folder, update the config settings, copy over and link to the database, and
away you go. Sometimes, it really is that easy.

But when it isn't, it's always the night before you are giving an all-important
presentation to a venture capitalist or a major prospect. So, in case this happens to
you, this chapter covers:

What to look for in your config files
Some diagnostic tools to use if you get stuck
Some potential differences between servers that may trip you up
Some notes on security, now that you're out there in the big world

Next, this chapter covers upgrading, and looks at some of the ways in which CI has
changed in the year it's been available. How stable is it? What decisions should you
make if you are committing a critical site to it? And what should you do, once your
site is up and running, if Rick Ellis brings out a newer version of CI?

Lastly, we briefly discuss making your own alterations to the core of CI. It's all there;
it's open-source it's possible. Whether it's sensible or not is another matter.

•

•

•

•

Production Versions, Updates, and Big Decisions

[172]

Connections: Check the Config Files
Systems usually fail at the interfaces. That's what your config files are there for: to
give you a place to put all those interfaces. If you haven't done so, you've missed one
of CI's major strengths.

The major interface problems are likely to be:

URLs
CI works by finding files. Your user connects to index.php, and then a whole
process of loading starts. At least, it should do. Make sure you have set the web
address and server addresses correctly in your config files. The web address is your
web root folder; you may have to ask your ISP for the server address, though usually
it is clear from their own 'file manager' programme.

I've had particular issues trying to run sub-domains. Many hosts allow them, but
map the domains to folders in ways you don't expect.

Databases
Locating and connecting to your database is often a major issue. Look at your config
file and your config/database file. You need to make sure that you have the correct
site and server addresses, and the correct database name, address, user name, and
password. Be careful with prefixes—sometimes these are added automatically. (Your
site is called 'fred'. Your database, you think, is called 'mydata' and your user name is
'mylogin'. But the server thinks they are called 'fred_mydata', 'fred_mylogin', etc.)

Sometimes, it helps to create a new user on your database, even if you have one
already, and set the log-in for this user's name and password. I have no idea why this
works, but it does.

In the config file, you can set CI to accept different types of URI protocols, which
determine how the server handles the URI string. The default is:

$config['uri_protocol'] = "auto";

but there are four other options that you can try if this doesn't work. If the correct
option isn't set, you may find your site partly works, but (for example) forms don't
call the target page.

Chapter 12

[173]

Other config Files
The config/routes file sets the default path the application follows, if the user
doesn't specify a controller/method through the URL (i.e. if they just log on to
www.mysite.com). This should normally be set at the default:

$route['default_controller'] = 'index';

If you renamed the system folder, then remember that you also need to alter the
index.php file in the site's root directory. The default setting is:

$system_folder = "system";

Look Out for PHP 4/5 and Operating
System Differences
CI should be able to live with any version of PHP including and later than 4.3.
However, this doesn't mean that any PHP code you write will also be
compatible—so if you wrote it on Xampplite using PHP 5, and are moving to an ISP
with a PHP 4 server, look out for problems due to language differences.

PHP (of whatever version) can be set up in different ways. It's worth running
phpinfo() on your local and remote sites, and checking for differences.

Case sensitivity is different between Microsoft and Linux servers. So if you've
developed your site on a PC, and then uploaded it to a Linux-based server, expect
the server to report that it can't find some of the models or libraries you want to
load. If you've checked and they have been uploaded, then make sure that the
capitalization is correct. Because class definitions and constructors in CI have
to begin with a capital, it's easy to begin the file name with a capital too. If
you load a model, say, inside a controller, and give it a capitalized name
($this->load->Mymodel), then Windows and Linux may have different views
about calls to $this->mymodel.

As an extreme example of server differences, I once began to write a controller,
decided to make it a model instead, and so saved it in the model folder without
realizing that I had left the first few lines as:

class Myclass extends Controller {

 function Myclass()
 {
 parent::Controller();

Production Versions, Updates, and Big Decisions

[174]

instead of changing them to:

class Myclass extends Model {

 function Myclass()
 {
 parent::Model();

Running locally on Xampplite, this did not throw an exception. Transferred to a
remote Linux server, it immediately failed (and you can imagine how long it took to
track down…).

Some PHP functions also appear to behave differently on different operating
systems: for instance, include_once() is case insensitive on Windows but not on
other systems. That's not specifically a CI issue, though.

Also, your database may be a different version—many ISPs are very traditional,
running MySQL 3.23 for instance! This seems to cause some incompatibilities, which
means that uploading a database by a SQL query is less easy than it should be. (For
instance, it may not accept comments on db tables.)

Linux has a different system of file permissions to Windows. Make sure that you
have the correct permissions on your files and folders. Certain CI file permissions
must be set correctly before the system can work.

Diagnostic Tools
The first line of the index.php file is:

 error_reporting(E_ALL);

which displays any PHP errors on your screen, like this:

Chapter 12

[175]

Obviously, error reports like this look bad, and may give hackers too much
information, so for the production version you alter this to:

error_reporting(0);

But then, any problems may simply result in a blank screen, with no helpful
diagnostic information. You may have to turn error reporting back on, until you have
got the site running. One compromise is to set it to an intermediate level, such as:

error_reporting(E_ERROR);

This will prevent 'warnings' but will still give you information about serious
problems. 'Warnings' are usually conditions that don't stop the programme from
executing, but may point to other underlying issues that you hadn't considered.

The CI Profiler class—see Chapter 8—is also very useful: it shows you what queries
you are doing, and what is in the POST array.

Various other tools I have found useful when things don't work:

1.	 Set CI to print a log file. (Done from the config file—see Chapter 8—you need
to set:

	 $config['log_threshold'] = 4;

4 shows all messages, including just notices and warnings; sometimes these
are pointers to an underlying problem. Then look at the log (printed in
/system/logs, filed by date.) This will tell you which parts of the CI system
have been called, so you can at least see where the process stopped. (Set the
value back to 0 to prevent further logging. Remember to do this, and to remove
the log files when you've finished: it's amazing how much space they take up.)

2.	 If you can access them, print out the PHP server and session variables:
	 print_r($_SERVER)

	 and:

	 print_r($_SESSION)

and use them to check that the document_root and script_filename values are
what you expect. If not, you may need to adjust your config file values for base_url
and server You can also see if there is an [HTTP_COOKIE]value set, which will show
you if your session class is enabled and working�.

3.	 Check what CI has loaded into its superobject by using PHP's methods:
	 get_declared_classes();

	���� and:

	 get_class_methods();

Production Versions, Updates, and Big Decisions

[176]

4.	��������� CI's own show_error() function is only a means of formatting error reports
that you generate. So including the following line in your code, say at some
branch that should not be reached:

 show_error('test of error function');

would result in your screen showing:

I don't find that very useful. What I want is a system that will give me full, helpful
error reports, when and where I want them, but won't show them when I don't want
them to appear. I wrote my own function, which reads:

function reportme($file, $line, $message)
{
 $obj =& get_instance();
 if(isset($_POST))
 {$bert = print_r($_POST, TRUE);}
 else {$bert = 'no post array';}
 if(isset($_SESSION))
 {$sid = print_r($_SESSION, TRUE);}
 else{$sid = 'no session array';}

 $time = Gmdate("H:i j-M-Y");
/*full report*/
	 $errorstring = "$time - $file - $line: $message: POST array:
$bert SESSION array: $sid\n";

/*short report*/
 $shortstring = "$file - $line: $message";

/*set $setting to 'test' if you want to write to the screen*/
 $setting = 'test';
 if($setting == 'test')
 {echo $errorstring;}

/*set $action to 'log' if you want to log errors*/
 $action = 'log';
 if($action == 'log')
 {	
 $filename = $obj->config->item('errorfile');
 $fp = fopen("$filename", "a+")or die("cant open file");
 fwrite($fp, $errorstring);

Chapter 12

[177]

 fclose($fp);
 }
}

This lives in a library called errors. I have to remember to load the library, and then,
whenever I have a section of code that I'm not confident about, I include the function:

 $this->errors->reportme(__FILE__,__LINE__,'if the code has reached
here it is because......');

I can then set the reportme() function to give me a report on the screen, or in my
log file.

There are several advantages to a simple method like this. Firstly, I can alter the
reportme() function easily, to make it write errors to a file, or to do nothing at all: so
I can make all my reports disappear from the screen at once, or come back again, by
changing one line of code.

Secondly, let's say I am expecting a variable to have a particular value. (An ID
number to be an integer, say.) I make the message as complete and helpful as
possible. I try to say what I expected to find (an integer), as well as including the
value I actually got. The function call also uses PHP's __FILE__ and __LINE__ 'magic
constants' to tell me exactly where it happened.

So, if this particular piece of code becomes a problem when I transfer it to another
server, possibly some time after I wrote it, I can immediately find the code, and the
text helps me to remember why it is a problem. Six months after you write code, you
can't just pick it up straight away, especially if it is late at night and a client is on the
phone asking for an explanation! The more helpful the error text, the easier it is to
respond sensibly.

Thirdly, if the integrity of the site was really critical, I could set the function to
email me with error reports. That might result in a very full mailbox during the
development phase, but once the site is stable and in use, it might be very useful
to have an immediate warning if the site is experiencing problems. You will know
about them before your users tell you.

Coping with Change in New CI Versions
Between 28 February 2006 and 30 October 2006, CI went from its first beta to version
1.5. That's a pretty impressive rate of development.

Production Versions, Updates, and Big Decisions

[178]

During that time Rick Ellis made several fairly radical changes, particularly to the
structure of the site. For the most part, he has been careful to make them backwardly
compatible—but not all of them are. If you are new to CI and have downloaded the
latest version, you can skip this section. But if you wrote programmes using earlier
versions, you may need to check these changes. You may also need to check if you
are using CI libraries or plug-ins written by other people.

Rick has grappled with two main problems:

How to Load Models, and What to Call Them
At first, there were no models, just folders for scripts and libraries. There was no
provision to initialize them automatically as part of the CI 'super-object'. As a result,
you had an MVC system without 'model' files, which seems confusing.

As well as this, there are two libraries folders: /system/application/libraries
holds any files you write for yourself, while /system/libraries holds the system's
own operating files. This may have confused a few people: the two are quite
different! You ought to be adding to or altering the former; you probably don't need
to alter the latter. (And if you do, you run serious risks of incompatibility if you
upgrade to a later CI version: see below.)

With version 1.3 came a new 'model' class. The User Guide defines models as, "PHP
classes that are designed to work with information in your database". When first
introduced, CI models connected automatically to the database. However, since
Version 1.3.3, you must specifically load the database from inside the model or the
controller that calls it.

Or, when you call the model from the controller, you can do so in this format:

$this->load->model('Mymodel', '', TRUE);

and then the 'TRUE' loads the model with the default database connection made, as
defined in your config file. (The second parameter, left blank here, is an optional alias
for the model.)

CI will probably still work if you put the functionality of a 'model' (in the MVC
sense) into a 'library' or a (deprecated) 'script', as you had to in the early days
when there were no 'models' folders: but you'll have to access the CI resources
differently—see the next section!

Chapter 12

[179]

How to Initialize Your Own 'library' Classes
Originally, you couldn't make your own classes part of the CI 'super-object'. This
was a problem, because it meant that your library code couldn't, for instance, access
the database through Active Record, or use other CI libraries, and that became
pretty limiting.

Version 1.2 added the get_instance() function that allows you to access the
'super-object'. (See Chapter 7.) You could include it in your 'library' or 'script' and
then use the CI resources. (Unless your new file was a functional script rather than
an OO class, of course. However, script files are probably best used for simple
low-level functions.)

Version 1.4 introduced a new system. You had to create two files for each 'library'
class. The first was the class itself, say Newclass.php, stored in the application/
libraries folder, and the second, stored in an application/init folder, had
to be called init_newclass.php and contained a few standard lines of code that
initialized it as part of the 'super-object'. However, you still had to use the
get_instance() function to access CI resources.

In version 1.5, the init folder has been deprecated, and initialization happens
automatically. You now only need the one file for each 'library' class.

The old scripts folder has also been deprecated. 'Deprecate' in this context, usually
means that the thing concerned is till recognized and should still work, but that the
developer offers no guarantee that it will do so in all future versions. In other words,
don't panic if you still have scripts in a system/application/scripts folder—but
don't write any more.

If you are planning to use libraries or plug-ins written by the CI community, please
check first that they are up to date with the latest CI version. There are quite a few
around still that were written for 1.4.1 and have separate 'init' files. Updating them
isn't difficult, but it does take some care to get it right.

So Should I Update If a New CI Version
Comes Out?
New versions of CI come out from time to time. They come with comprehensive
instructions for updating. Usually, this involves copying a new set of files to your
system folder. Sometimes, you need to change config files, or your index.php file,
as well, but none of these are major changes and none of them are rocket science.
Because the folder structure keeps your application files in their own place, it's
usually easy to update the system without touching the applications.

Production Versions, Updates, and Big Decisions

[180]

But, say you've written your killer app in version 1.5. It's uploaded to your
production system and working fine. Then, Rick Ellis brings out CI version 1.6 (or 2.8
or whatever…). It has interesting new features, and some bug fixes. Do you
upgrade to it?

I would say, 'Yes', if it's a minor upgrade, say between 1.5.2 and 1.5.3. But if it's a
major version change, and your existing system is working, leave well alone. You
can tell the difference partly from the numbering, but also from the 'change log'
published with each upgrade when it comes out. The sort of changes that have been
made in CI over the last year fall into three categories:

Bug fixes: There are surprisingly few of these—CI is excellent code, and most of the
base classes have been well tested by hundreds if not thousands of users.

New features:. These appear regularly, but if you managed to build your application
without them, will they really be helpful now?

Subtle changes: As I've described, CI has gone through a process of internal
evolution, and it may well continue to do so. As you can see from the following
table, some of these might be backwardly compatible, or they might require fairly
major re-writes of your code.

Some changes between versions of CI:

Version Change Log
1.2 Added a global function named get_instance() allowing the main

CodeIgniter object to be accessible throughout your own classes.
1.3 Added support for Models.
1.3 Added the ability to pass your own initialization parameters to your

custom core libraries when using $this->load->library().
1.3 Added better class and function name-spacing to avoid collisions

with user developed classes. All CodeIgniter classes are now prefixed
with CI_ and all controller methods are prefixed with _ci to avoid
controller collisions.

1.3.3 Models do not connect automatically to the database as of this version.
1.4 Added the ability to replace core system classes with your own classes.
1.4 Updated the Models loader function to allow multiple loads of the

same model.
1.4.1 Updated plugins, helpers, and language classes to allow your

application folder to contain its own plugins, helpers, and language
folders. Previously, they were always treated as global for your
entire installation. If your application folder contains any of these
resources they will be used instead the global ones.

Chapter 12

[181]

Version Change Log
1.4.1 Deprecated the application/scripts folder. It will continue to

work for legacy users, but it is recommended that you create your own
libraries or models instead. It was originally added before CI had user
libraries or models, but it's not needed anymore.

1.5 Added the ability to extend libraries and extend core classes, in addition
to being able to replace them.

1.5 Deprecated init folder. Initialization happens automatically now.

Don't misunderstand me. All of these are sensible changes and all of them are
improvements. If you are starting a new project, start with the latest CI version. But
if you wrote code using version 1.3, say, you will find that your scripts folder is
deprecated and your models don't automatically connect to the database any more.
Personally, I would leave that code running on version 1.3 of CI, rather than try to
upgrade it. Life's too short.

How to Add On to CI's Basic Classes
Normal users are unlikely to need to alter the base CI classes. It's a pretty good
framework, it does a lot of things, and after all, the point of a framework is to make
thing easy, right? However, if you must ….

CI is open source, and you can see all the code as soon as you download it. This
includes the basic libraries that make CI work (stored in system/libraries) as well
as the ones you wrote in system/application/libraries.) So it has always been
possible to change CI any way you like.

Changing system library files has two problems, however:

There's no guarantee that your new code will be compatible with the rest of
CI, or with updated versions. This may lead to subtle or strange errors that
won't be easy to track down.
If you later update your CI version, the system folder is likely to be changed.
The library file you altered may well be over-written and updated, so you'd
have to go through your changes and transfer them to the updated version.

However, since version 1.5, there are now two sensible 'work-arounds' for tinkering
with the CI library classes (except for the underlying 'database' and 'controller'
classes, which you touch at your peril.)

•

•

Production Versions, Updates, and Big Decisions

[182]

Firstly, you can create a file with the same name as any of the system base
classes in your /system/application folder. The system then uses this one,
in preference to the standard one in the /system folder. This requires exact
naming conventions—see the online User Guide. It also requires you to copy
all the functionality in the existing class as well as your own additions
or changes.
Secondly, and more conveniently, you can create a new class that extends the
system class. (So it's perhaps best referred to as a 'sub-class'.) Again, there are
naming conventions—see the online User Guide. Extending the underlying
system class means that your new sub-class inherits all the resources of the
underlying CI class, but adds a few extra methods of your own. This should
mean that, if you update your CI version, the underlying CI class will be
replaced, but your new sub-class (which you should put in the system/
application folder) will be left untouched.

However, neither of these methods will guarantee that your code is (or remains)
compatible with the rest of CI.

Looking through the CI online forums, there are various suggestions for extending
the Validation, Unit Testing, and Session classes. Unit Testing, for example, only has
two functions and a limited number of comparisons. Perhaps you want a function to
show up errors in red, so they stand out when the test results are returned?

If you wanted to make extensive use of some other testing function, it would be
simpler to add it in via a sub-class, extending Unit Testing, than to write it out in the
controller each time you called Unit Testing.

If you wanted to do this, you'd start your new sub-class this way:

class MY_Unit_test extends CI_Unit-test {
 function My_Unit_test()
 {
 parent::CI_Unit_test();
 }

function newfunction()
{
 //new code here!

}
}

•

•

Chapter 12

[183]

Notice three things here:

The name of the underlying unit testing class is CI_Unit_test, even though
the filename of the class code is system/libraries.unit_test.
If you need to use a constructor in your sub-class, make sure you extend the
parent constructor first, as here.

Your new sub-class name should be prefixed with MY_, and saved as
application/libraries/MY_unit_test.php. (Unlike the main classes,
where the CI_ prefix is part of the class name but not of the filename, here
the MY_ prefix is part of both.)

Once you've created your sub-class, you load it like this:

$this->load->library('unit_test');

In other words, exactly the same as before you wrote the sub-class; and you call a
function in the same way too, except that this time you can call not only the existing
unit test functions, but also any new ones you've written yourself:

$this->unit_test->newfunction();

When you next update your CI installation, the unit test library in the system folder
will be overwritten, but the one in the application folder won't, so your code will
still be there. Of course, you'll need to check that the updated system library is still
compatible with your own code.

Summary
In this chapter, we've seen some of things that can go wrong when you try to transfer
your system from a local server to a remote one. This may involve:

A different version of PHP or MySQL
A different operating system

In particular, we've looked at case sensitivity, PHP differences, and MySQL issues.
We've also looked at diagnostic tools.

Then we looked at the CI's updates. These have all been major improvements, but
my advice is, if you have a system working on the current CI version and a new one
comes out, think carefully before you upgrade.

Lastly, we looked at the pros and cons of adding to CI's basic classes. Most users
won't need to do this, but if you want to, I strongly suggest that the best way to do it
is to sub-class an existing library class.

•

•

•

•

•

Instant CRUD—or Putting it
All Together

The most essential—and the most boring—part of writing any dynamic site is the
CRUD. You have one or more database tables; you need to be able to Create, Read,
Update, and Delete entries on each of these. Later on, you'll do clever things with the
data, but until there is some user-friendly way to put it there and maintain it, your
site isn't viable.

But this involves writing CRUD functions and these, though conceptually quite easy,
are fairly complex and time-consuming. So for our site, I've written a generalized
CRUD model, using CI's classes and helpers to make it easier. In this chapter, you'll
see how this model works and how to integrate it into our application.

The CRUD model does more than just CRUD. It validates user-entered data, and also
checks it in several ways—e.g., to see that you don't do a 'delete' operation without
limiting it to a specific table row, or that you don't accidentally repeat 'create'
operations by going back to the entry form and reloading it in your browser.

Lastly, the CRUD model contains its own self-testing framework, so that you can
perform development tests as you build or adapt your code.

There are other CRUD frameworks out there, which may be more comprehensive
and possibly better code (see Chapter 15). However, this one does work. And it's a
good way of summing up and using many of the lessons that we've learned in the
previous chapters.

This chapter sets out the code for the model, with some comments:

First of all, we look at the design philosophy.
Then we look at a standard controller to use with the model.
Then we look at the way database tables must be structured.

•

•

•

Instant CRUD—or Putting it All Together

[186]

Then we'll look at the model itself: firstly, the array that holds information
about the database, and then at the separate functions.
Lastly, we'll look at the self-test functions.

The CRUD Model: Design Philosophy
The idea behind this CRUD model is that it can be called by any controller for any
table. The data about that table, and how you want its update form displayed is held
once, in an array. Everything else is standard: the controller just identifies itself (and
thereby the table it acts on) and if necessary, gives an ID number for a record. So all
you have to do is write a few simple controllers, and all the work of setting out forms
and making database connections is done for you.

Remember that the user can't talk to a model directly, so (s)he has to go through a
controller every time. You could put all the code in the controller, but then you'd
have to copy it all for each new controller. This way, there is only one set of CRUD
code in the model, so only one set to update and maintain. The price is that you
have to keep passing information backwards and forwards between controllers and
model, which makes the code slightly more difficult to follow.

For the sake of simplicity, I've used two external functions that aren't defined in
this code:

failure(), which reports errors; however, I want this done.
A model called display—this creates menus and sets up base URLs and
so on. So all the �� CRUD�� functions build up a pile of data, put it in the $data
variable, and simply call:

	 $this->display->mainpage($data);

I also want the CRUD model to be able to test itself, so it includes a self-test suite.
Calling this during the design process allows me to check that the model will behave
as I want it to, under any conditions I can think of. (It's surprising how writing the
test suite makes you realize new things that can go wrong—but better now than
when your clients use the site.)

Please bear in mind that every model like this is a compromise. The more you ask of
it, the more it asks of you. For instance, this model won't work unless your database
tables are laid out in specific ways. It will lay out forms in quite sophisticated ways,
but it is not infinitely flexible. It doesn't include JavaScript for better control of the
user's experience. It can't handle exceptions to its own rules. On the other hand,
provided you only want to do a set of standard things (that are pretty common), it
makes life a lot easier.

•

•

•

•

Chapter 13

[187]

The Standard Controller Format
Firstly, for each database table, you need a standard controller. This is how the user
will interact with your table—e.g., to add a new site, change the details of an existing
one, etc. To add a new person, the user will interact with the people table, so we
need a different controller: but it is almost the same as the sites controller.

This is the controller for our sites table:

<?php
class Sites extends Controller {

/*the filename, class name, constructor function names and this
variable are the only thing you need to change: to the name of the
table/controller (First letter in upper case for the Class name and
constructor function, lower case for the file and variable.lower
case!)*/
 var $controller	 = 'sites';

/*constructor function*/
 function Sites()
 {
 parent::Controller();
 $this->load->model('crud');
 }

/*function to update an entry (if an ID is sent) or to insert a new
one. Also includes validation, courtesy of CI */	
 function insert($id)
 {
 $this->crud->insert($this->controller, $id);	
 }

/*interim function to pass post data from an update or insert through
to Crud model, which can't receive it directly*/
 function interim()
 {
 $this->crud->insert2($this->controller, $_POST);
 }

/*function to delete an entry, needs table name and id. If called
directly, needs parameters passed to function; if not, from Post
array*/
 function delete($idno=0, $state='no')
 {
 if(isset($_POST['id'])&& $_POST['id'] > 0)
 {$idno = $_POST['id'];}
 if(isset($_POST['submit']))
 {$state = $_POST['submit'];}

Instant CRUD—or Putting it All Together

[188]

 $this->crud->delete($this->controller, $idno, $state);
 }

/*function to show all entries for a table*/
 function showall()
 {
 $this->crud->showall($this->controller, $message);
 }

/*function to show all data in a table, but doesn't allow any
alterations*/
 function read()
 {
 $this->crud->read($this->controller);
 }

/*function to set off the test suite on the 'crud' model. This
function need only appear in one controller, as these tests are made
on a temporary test table so that your real data is not affected*/
 function test()
 {
 $this->crud->test();
 }
}
?>

As you see, this is pretty lean and completely generalized. If you wanted to make it
the people controller instead of the sites controller—in other words, to allow you
to create, read, update or delete entries in the people table, all you need to do is:

Change the class name from Sites to People (upper-case initial letter!).
Change the $controller variable from sites to people (lower case).
Change the constructor function name from Sites to People (upper case
initial letter).
Save the new controller as:
system/application/controllers/people.php.

The name of the controller must be exactly the same as the name of the database
table to which it relates—so for the people table, it must be people. The name must
have an uppercase first letter in the class definition line and the constructor function,
but nowhere else.

•

•

•

•

Chapter 13

[189]

The Database Tables
There are three simple rules for your database tables:

1.	 The main ID field in each table must always be called 'id' and must be
an auto-incrementing field. (This is a standard MySQL field type. It
automatically creates a new, unique number each time you make a
new entry.)

2.	 There must also be a field called 'name' in every table, if you want to use it as
the basis for a dynamic drop-down box on any form.

3.	 You also need a 'submit' field for holding states, and things like that.

Otherwise you can have whatever fields you like, and name them anything your
database system is happy with. Everything else is handled by the CRUD model, for
any controller/table pair designed along these lines.

The Heart of the Model: the Array
Preliminaries over. Let's start on the CRUD model.

First, you need to define the CRUD model and a constructor function. Standard stuff
by now:

<?php
class Crud extends Model {

/*create the array to pass to the views*/
 var $data = array();
 var $form = array();
 var $controller;

 function Crud()
 {
 // Call the Model constructor
 parent::Model();
 $this->load->helper('form');
 $this->load->helper('url');
 $this->load->library('errors');	
 $this->load->library('validation');
 $this->load->database();
 $this->load->model('display');

Save it as system/application/models/crud.php.

Instant CRUD—or Putting it All Together

[190]

Then comes the boring bit, but you only have to do it once. You need to write a
multi-dimensional array. (I started to learn PHP from a book—it had better be
nameless—which said 'multi-dimensional arrays aren't encountered very often,
so we won't go into them in further detail here'. I seem to have been using them
ever since.)

The first dimension of our array is the list of tables. (sites, people, etc.)

The second dimension is the list of fields within each table. For the sites tables,
these are id, name, url, etc.)

The third dimension describes each field and provides a set of parameters that
control how it will be handled by the insert/update form. These are:

The text you want the user to see on the insert form: how this field is
described to a human, rather than its actual name. (So the first one is
ID number of this site rather than just id.) This is to help you to make your
forms user-friendly.
The type of form object you want to use to display this field on your insert/
update form: this might be an input box, or a text area, or a drop-down box.
(This CRUD model covers some but not all of the options.)
Any CI validation rules you want to impose when the user fills out this form.
This can be left blank.
If you want to display this field as a dynamic drop-down box, the name
of the table it will draw on. See below for explanation. This can also be
left blank.

We've already declared the array as a class variable $form, so ever afterwards we
have to refer to it as $this->form). It is defined inside the constructor, that is, it
follows on immediately from the previous code.

 $this->form =
 array
 ('sites' => array
 (
 'id' => array('ID number of this site',
 'readonly', 'numeric'),
 'name' => array('Name of site', 'textarea',
 'alpha_numeric'),
 'url' => array('Qualified URL,
 eg http://www.example.com', 'input', ''),
 'un' => array('username to log in to site',
 'input', 'numeric|xss_clean'),
 'pw' => array('password for site', 'input',
 'xss_clean'),

•

•

•

•

Chapter 13

[191]

 'client1' => array('Main client',
 'dropdown', '', 'people'),
 'client2' => array('Second client', 'dropdown',
 '', 'people'),
 'admin1' => array('First admin', 'dropdown',
 '', 'people'),
 'admin2' => array('Second Admin', 'dropdown',
 '', 'people'),
 'domainid' => array('Domain name', 'dropdown',
 'numeric', 'domains'),
 'hostid' => array('Host', 'dropdown',
 'numeric', 'hosts'),
 'submit' => array('Enter details', 'submit', 'mumeric')
),
 'domains' => array
 (
 'id' => array('ID number of this domain',
 'hidden', 'numeric'),
//etc etc etc!!

You can see that, within the $form array, there are sub-arrays for each table (here,
sites and domains, though I only just started the latter, for space reasons) which
each contain their own sub-sub-arrays, one for each field ('id', 'name', etc). Each of
these sub-sub-arrays is in turn an array that contains the three or four values we
described above.

It can be fiddly to get the array syntax right, but conceptually it is simple.

For the complete set of tables in our application, this array takes about 120 lines to
specify. But you only have to do it once! This is the heart of your model. End the
constructor function with a closing bracket '}', and go on to the other functions in the
CRUD������� model.

If you ever need to change your database tables (add a new field, for instance) or you
want to change your validation rules, then you need only change the values in this
array. Everything else will change automatically: for instance, next time you try to
add a new entry, you should see the entry form reflecting the change.

Instant CRUD—or Putting it All Together

[192]

Function by Function: the CRUD Model
The various functions that make up the ��������������������������� CRUD����������������������� model are as follows:

Showall
This is the function that the user will go to most often. It acts as an entry point for
all the other operations—make a new entry, update, or delete an entry. It shows you
what is already in the table. With some test data in the sites table, it looks like this:

As you can see, from this screen you can update the entry for a site, or delete it. You
can also make a new entry, or read all the data in the table.

By the way, please bear in mind that this model doesn't include any security
provisions. In a real site, you might want to fine-tune users' options—e.g., allow them
to update but not delete. And you would want to make sure that hackers couldn't
access the functions of the CRUD model by typing in URLs like www.example.com/
index.php/sites/delete/18. CI's URL-based structure makes it relatively easy to
deduce how the system accesses these commands, so you might want to ensure that
the user has to be logged in to the site before the CRUD model will activate at all.

Chapter 13

[193]

Right, back to the CRUD mechanisms. Remember that humans can't call the model
directly. In each case the option (to delete, update, etc.) is exercised via a call to
the controller. Just to jump back, the sites controller that called up the showall
function did so with this line of code:

 $this->crud->showall($this->controller);

in other words, it substituted sites for $this->controller, and passed that value
as a parameter to the �� CRUD�� function, to tell it which controller it was acting for.

Let's now look at the showall function. It has been passed its first parameter, sites.
We'll leave $message until later. Concentrate on the highlighted lines.

 /*this function lists all the entries in a database table on one
page. Note that every db table must have an 'id' field and a 'name'
field to display!
This page is a jumping-off point for the other functions - ie to
create, read, update or delete an entry.
When you've done any of these, you are returned to this page. It has a
'message' parameter, so you can return with a message - either success
or failure.*/

function showall($controller='', $message = '', $test ='no')
{
 $result = '';
 $mysess = $this->session->userdata('session_id');
 $mystat = $this->session->userdata('status');
 if(!$this->db->table_exists($controller))
 {
 $place = __FILE__.__LINE__;
 $outcome = "exception:$place:looking for table
$controller: it doesn't exist'";
/*test block: what if there is no controller by that name?*/
 if($test =='yes')
 {
 return $outcome;
 }
 else{
 $this->failure($outcome, 'sites');
 }
 }
/*end test block*/
 $this->db->select('id, name');
 $query = $this->db->get($controller);
 if ($query->num_rows() > 0)
 {
 $result .= "<table class='table'>";

Instant CRUD—or Putting it All Together

[194]

 $result	.= "<tr><td colspan='3'><h3>$controller</h3></
 td></tr>";
 $result	.= "<tr><td colspan='3' class='message'>
 $message</td></tr>";
 $result	.= "<tr><td colspan='3'>";
 $result .= anchor("$controller/insert/0", 'New entry');
 $result .= "</td></tr>";
 $result .= "<tr><td colspan='3'>";
 $result .= anchor("$controller/read",
 'Show all entries in the table');	
 $result .= "</td></tr>";
 	 foreach ($query->result() as $row)
 	 {
 	 $result .= "<tr><td>";
 $result .= $row->id;
 $result .= " ";
 $result .= $row->name;
 $result .= "</td><td>";
 $result .= anchor("$controller/insert/
 $row->id",'Update this entry');
 $result .= "</td><td>";
 $result .= anchor("$controller/delete/
 $row->id",'Delete');
 $result .= "</td></tr>";
 	 }

 $result .= "</table>";

 $data['text'] = $result;
 $this->display->mainpage($data, $this->status);
 }
 else
 {$place = __FILE__.__LINE__;
 $outcome = "exception: $place:
 no results from table $controller";
/*test block: were there results from this table/ controller?*/
 if($test == 'yes')
 {$place = __FILE__.__LINE__;
 return $outcome;
 }
/*end test block*/
 else{
 $message = "No data in the $controller table";
/*note: this specific exception must return to another controller
which you know does contain data…… otherwise, it causes an infinite
loop! */
 $this->failure($message, 'sites');
 }
 }
}

Chapter 13

[195]

It sets up a table, displaying some data (id and name) about each entry. Each entry
line also gives you the option to update or delete the entry: this is achieved using
CI's anchor function to create hyperlinks to the appropriate functions in the
appropriate controller.

There's also a single line that offers you the opportunity to create a new site, again
by offering a hyperlink to the controller's insert function. (Note: I've called the
insert function both for making new entries and updating old ones. This is because
the model assumes that if insert is called with an ID number, it is to update the
corresponding entry. If it's called without an ID number, it creates a new entry.)

A lot of the code is taken up with exception handling: what if the table doesn't
exist, what if the query returns no information? Exceptions are passed to the failure
function. There are also two test blocks to allow me to run self-tests.

In addition, there's a line that allows you to read (but not alter) all the data in the
tables. Let's look at the read function first, as it's the simplest.

Reading the Data
I've used CI's HTML Table (see Chapter 10) and Active Record classes (see
Chapter 4) to show just how simple this piece of functionality is. I want a simple
formatted page that shows all the data in the database in an HTML table. It doesn't
allow any changes: it is literally the 'read' page.

First there has to be a function in the controller to call the model and tell the model
which controller/table is to be displayed. That's the read() function in the standard
controller.

It calls the following function in the CRUD model:

/*queries the table to show all data, and formats it as an HTML
table.*/
function read($controller)
{
 $this->load->library('table');
 $tmpl = array (
 'table_open' => '<table border="1"
cellpadding="4" cellspacing="0" width="100%">',
 'row_alt_start' => '<tr bgcolor="grey">',
);

 $this->table->set_template($tmpl);
 $this->load->database();
 $this->load->library('table');
 $query = $this->db->get($controller);

Instant CRUD—or Putting it All Together

[196]

 $result = $this->table->generate($query);
 $data['text'] = $result;
 $this->display->mainpage($data);
}

The two highlighted lines do all the work of querying the database and formatting
the results.

I've used the mainpage function in the display class to provide formatting for the
page: the read function here just builds the data and hands it on as part of an array.

The result is a page full of data from the test file:

Let's just remind ourselves how control passes between the controller, the CRUD
model, and other parts of the program.

user clicks

‘read’

hyperlink

Controller

‘read’

function

calls model

CRUD model

read function

generates table

Display

Model

generates

view

View

generates

HTML

page for

user

Delete and Trydelete
Deleting is the most permanent operation! For this reason our delete function checks
to make sure of two things:

Chapter 13

[197]

1.	 That a state variable of 'yes' has been set in the 'submit' field: if not, it passes
the request to a trydelete function. That asks the user if she or he really
does want to do a delete. If she or he confirms, the trydelete function sets a
state variable of 'yes' and sends the request back to the delete function, which
now accepts the delete instruction.

2.	 Before doing the delete query, it checks that an ID number has been set
(otherwise all the entries might be deleted). Then, it uses CI's Active Record
to do the delete and to check that one line has indeed been removed from
the table. If one line was removed, then it returns to the showall function.
You'll notice that it passes back two parameters—the controller name, and a
message reporting that the deletion has been successfully done. (This is the
second parameter to showall. If it is set, it appears in a red box at the top of
the table, letting the user know what is going on.)

First, here's the delete function. You'll notice this code is also complicated by a lot of
'test block' lines. Ignore these for now: just follow the highlighted code..

/*DELETE FUNCTION: given table name and id number, deletes an entry*/
 function delete($controller, $idno, $state='no', $test='no')
 {
/*first check that the 'yes' flag is set. If not, go through the
trydelete function to give them a chance to change their minds*/
 if(!isset($state) || $state != 'yes')
 {
/*test block: are 'yes' flags recognised?*/
 if($test == 'yes')
 {
 $place = __FILE__.__LINE__;
 $outcome = "exception at $place: sent state
value $state to trydelete function ";
 return $outcome;
 }
 else
/*end test block*/
 {$this->trydelete($controller, $idno, 'no');}
 }
 else{
/*'yes' flag is set, so now make sure there is an id number*/
 if(isset($idno) && $idno > 0 && is_int($idno))
/*test block: with this id no, am I going to do a delete?*/
 {
 if($test == 'yes')
 {
 $place = __FILE__.__LINE__;
 $outcome = "OK at $place:
 doing delete on id of $idno ";

Instant CRUD—or Putting it All Together

[198]

 return $outcome;
 }
 else{
/*end test block*/
/*if there is an id number, do the delete*/

 $this->db->where('id', $idno);
 $this->db->delete($controller);
 $changes = $this->db->affected_rows();
 }

 if($changes != 1)
 {
/*test block: did I actually do a delete? */
 $place = __FILE__.__LINE__;
 $outcome = "exception at $place: cdnt do delete
op on $controller with id no of $idno";
 if($test == 'yes')
 {return $outcome;}
 else 	
/*end test block*/
/*if there was no update, report it*/
 {$this->failure($outcome);}
 }
 else{
/*test block: I did do a delete*/
 if($test == 'yes')
 {return 'OK';}
 else{
/*end test block: report the delete*/
 $this->showall($controller,
 "Entry no. $idno deleted.");}
 }
 }
 else
 /*test block: report id number wasn't acceptable'*/
 {
 $place = __FILE__.__LINE__;
 $outcome = "exception at: $place : id no of $idno set
for delete op in $controller, expecting integer";

 if($test == 'yes')
 {return $outcome;}
 else
/*endtest block: if I failed, report me*/
 {$this->failure($outcome);}
 }
 }
 }

Chapter 13

[199]

I promised to explain the $message parameter we used when we call showall. You
can see it here: if this function is successful, it returns to the showall page, by calling
it with an appropriate message:

 $this->showall($controller, "Entry no. $idno deleted.");}

It's important not only that the action is done, but that the user knows it has been.

Now, back to preventing accidental deletions. If the delete function wasn't
called with the state=yes parameter, it reroutes the request to the trydelete
function—the 'second chance'. Actually, only the trydelete function will ever set
this parameter to yes, so the delete form will always present an are you sure option
to the user.

Let's look at the trydelete function. It creates a simple form, which looks like this:

Clicking on yes re-calls the delete function. (Notice again that the form can't return
directly to crud/delete, because a form can't point to a model. It has to point to the
sites/delete function in the controller, which simply passes everything straight on
to the crud/delete function in the model again.)

The subtle change is that, if the user confirms the delete, the trydelete form adds
(as a hidden field) the submit=yes parameter, which goes into the post array, and
is returned to the controller's delete function. The controller's delete function reads
the submit=yes parameter from the post array, and puts together a call to the
crud/ delete function, which this time includes state=yes as a parameter, so the
delete function moves on to the next step.

If the user doesn't want to do the delete, she or he clicks on the hyperlink created by
the CI anchor function, and is passed back to the showall function, which is most
probably where she or he came from.

Here's the code that does all this:

/*TRYDELETE FUNCION: interrupts deletes with an 'are you sure?
screen'*/
 function trydelete($controller, $idno, $submit = 'no')
 {
 if($state == 'yes')
 {$this->delete($controller, $idno, 'yes');}

Instant CRUD—or Putting it All Together

[200]

 else{
 $result .= "<table><tr><td>Are you sure you want to
delete this entry?</td></tr>";
 $result .= form_open("$controller/delete");	
 $result .= form_hidden('id', $idno);
 $result .= "<tr><td>";
 $result .= form_submit('submit', 'yes');	
 $result .= "</td></tr>";
 $result .= form_close();
 $result .= "</table>";
 $result .= anchor("$controller/showall",
 "No, don't delete");
 $data['text'] = $result;
 $this->display->mainpage($data);
 }
 }

Just for clarity, here's a diagram of how control passes during a delete operation.

user clicks

‘delete’

hyperlink

Controller

‘delete’

function

calls model

CRUD model

delete function

checks for

permission to

delete (i.e. submit

field is ‘yes’)

No permission:

calls trydelete

function

user receives

trydelete view.

If user confirms

‘delete’ action,

submit field is

set to ‘yes’

user receives

showall view:

confirmation

of deletion

Display Model

generates either

‘trydelete’ or

‘showall’ view

Permission:

deletes entry,

calls showall

function

View generates

appropriate HTML

page for user

As you can see, this is quite complex, more so than our previous example. The
model is doing all the work, but the user can only talk to the controller, so if you
need to go back and re-present the question to the user, you need to involve the
controller again.

Chapter 13

[201]

However, once you've sorted it out, it works well and is highly logical. CI imposes
this framework on you, but in the long run that's an advantage. Your code is
consistent, and modular. Note how the same display model and the same view is
invoked each time: what they show the user depends on the CRUD model function
that called them.

Insert
This is the most complex function, because it generates a form for users to fill out.
(Interface with humans is always the most difficult thing…)

Rather than write two separate functions, one to insert and one to update, and have
to build the form twice, I've written one function that does duty for both. If you
supply a valid ID number, it updates the corresponding record; if not, it inserts a
new entry.

To make this easier to follow, I haven't included the test blocks that we saw in the
delete function.

This is where we use the array we defined at the beginning of this chapter. The
function sets up a form, using CI's form helper, and based on the type of form
element we specified in the array (dropdown, textarea, etc.). At the heart of the
function is a switch statement, which accomplishes this.

The code uses CI's validation class to help us check the incoming data: remember we
set the validation rules in our initial array.

/*the most complex function. This creates an HTML form, based on the
description of the fields in the form array. This is sent to our
display model, which sets up a view and shows it to the user.
The view then sends a POST array back to the controller. The form
can't call this model directly, so it has to call the controller,
which refers it back to the model.
Note the function parameters:
1. The controller parameter is whichever controller/ table has called
the model - eg the 'sites' controller, or the 'domains' controller.
The controller has the same name as the table it manipulates.
2. The optional id parameter is the id of an individual entry in that
table.
3. The optional 'test' parameter is so you can set the form up to make
usable responses to self-test functions.
*/

 function insert($controller='', $id=0, $test='no')
 {
 $myform = '';
 $myid = 0;

Instant CRUD—or Putting it All Together

[202]

 $currentvalue = array();

/*test if the table exists*/
 if(!$this->db->table_exists($controller))
 {
 $place = __FILE__.__LINE__;
 $outcome = "exception: $place:looking for table
$controller: it doesn't exist'";
 if($test =='yes')
 {
 return $outcome;
 }
 else{
 $this->failure($outcome, $controller);
 }
 }
 else
 {
 if($test =='yes')
 {
 return 'OK';
 }
 }
/*end test block*/

/*next check if there is an id number. If there is, we need to get the
values to populate the table fields*/
 if(isset($id) && $id > 0)
 {$myid = $id;
 $this->db->where('id', $id);
 $query = $this->db->get($controller);
 if ($query->num_rows() > 0)
 {
 	 $row = $query->row();
//--------------work out the values we want!
 foreach($row as $key =>$value)
/*
first of all work out what value you want to show as the existing
value in each line of the form. In priority order these are:
1. the last value the user entered, from the post array
2. the value from the database
3. nothing, if neither of these is set.
if we got here, the id does exist and is returning values, so get the
existing values into a value array. Or, if there is something in the
validation array, use that instead*/
 {
 $_POST[$key] = $this->validation->$key;

Chapter 13

[203]

 if(isset($_POST[$key]))
 {$currentvalue[$key] = $_POST[$key];}
 else
 {$currentvalue[$key] = $value;}
 }

/*test block: there was an id number, so has the program gone for an
update? if this is not a test, of course, just do the update*/
 	 if($test == 'yes')
 {
 $place = __FILE__.__LINE__;
 $outcome = "exception: $place: id of $id
returned results from $controller table so have gone for update";
 return $outcome;
 }

/*end test block*/
 	 $myform .= "<tr><td colspan='2'>Update
existing entry number $id</td></tr>";
 }
/*now catch situation where this query isn't returning results. We
could only have got here with an integer set as our ID number, so
this probably means we are trying to delete an entry that doesn't
exist.*/
 else{
 $place = __FILE__.__LINE__;
 $outcome = "exception: $place: despite
id of $id cant get any results from $controller table";

 if($test == 'yes')
/*test block: there was and ID but there were no results*/
 {
 return $outcome;
 }
/*end test block*/
 else
 {$this->failure($outcome, $controller);}

 }
 }

/*there was no ID number, so this is a new entry*/
 else{
/*If the user has filled in values, and has returned here because some
of them didn't validate, we still need to repopulate the form with
what he entered, so he only has to alter the one that didn't validate.
Get these from the post array*/

 if(isset($_POST))
 {
 foreach($_POST as $key => $value)

Instant CRUD—or Putting it All Together

[204]

 {
 if(isset($_POST[$key]))
 {$currentvalue[$key] = $_POST[$key];}
 }

 }
 $myform .= "<tr><td colspan='2'>New entry</td></tr>";

/*test block: there was no ID, so this is a new entry*/
 if($test == 'yes')
 {
 $place = __FILE__.__LINE__;
 $outcome = "exception: $place: id of $id
treated as no id, so going for new entry";
 return $outcome;
 }
/*end test block*/
 }

/*the table exists, whether this is an update or new entry, so start
to build the form*/
 $myform .= "<table class='table'>";
 $myform .= form_open("$controller/interim");
 $myform .= '<p>This entry could not be made because...</P>';
 $myform .= $this->validation->error_string;

/*the rest of this function is common to inserts or update.
Look up in the form array which form field type you want to display,
and then build up the html for each different type, as well as
inserting the values you want it to echo.*/

 foreach($this->form[$controller] as $key => $value)
 {

/*This switch statement develops several types of HTML form field
based on information in the form array.
It doesn't yet cover checkboxes or radio or password fields. It adds
a 'readonly' type, which is a field that only displays a value and
doesn't let the user modify it*/			

 $fieldtype = $value[1];
 $val_string = $this->validation->$key;
 switch($value[1])
 {
/*a simple input line*/
 case 'input':
 $data = array(
 'name' => $key,

Chapter 13

[205]

 'id' => $key,
 	 'value' => $currentvalue[$key],
 	 'maxlength' => '100',
 	 'size' => '50',
 	 'style' => 'width:50%',
);
 $myform .= "<tr><td>$value[0]</td><td>";
 $myform .= form_input($data);
 $myform .= "</td></tr>";
 if($test == 'second')
 {
 return 'input';
 }
 break;

 case 'textarea':
/*a text area field.*/
 $data = array(
 'name' => $key,
 'id' => $key,
 'value' => $currentvalue[$key],
 'rows' 	 => '6',
 'cols' => '70',
 'style' => 'width:50%',
);
 $myform .= "<tr><td valign=
 'top'>$value[0]</td><td>";
 $myform .= form_textarea($data);
 $myform .= "</td></tr>";
 break;

 case 'dropdown':
/*a drop-down box. Values are dynamically generated from whichever
table was specified in the forms array. This table must have an id
field (which is now entered in the form) and a name field (which is
displayed in the drop-down box).*/
 $dropbox = array();
 if(isset($value[3]))
 {
 $temptable = $value[3];
 $this->db->select('id, name');
 $query = $this->db->get($temptable);
 if ($query->num_rows() > 0)
 {
 	 foreach ($query->result() as $row)
 	 {
 $dropbox[$row->id] = $row->name;
 	 }
 }
 }

Instant CRUD—or Putting it All Together

[206]

 $myform .= "<tr><td valign=
 'top'>$value[0]</td><td>";
 $myform .= form_dropdown($key, $dropbox,
$currentvalue[$key]);
 $myform .= "</td></tr>";
 break;

 case 'submit':
/*a submit field*/
 $myform .= "<tr><td>$value[0]</td><td>";
 $time	 = time();
 $data = array(
 'name' => 'submit',
 'id' => 'submit',
);	
 $myform .= form_submit($data);
 $myform .= "</td></tr>";

 break;

 case 'hidden':
/*generates a hidden field*/
 $myform .= form_hidden($key,
$currentvalue[$key]);
 break;

 case 'readonly':
/*generates a field the user can see, but not alter.*/

 $myform .= "<tr><td>$value[0]</td><td>$current
value[$key]";

 $myform .= form_hidden($key,
$currentvalue[$key]);
 $myform .= "</td></tr>";

 break;

 case 'timestamp':
/*generates a timestamp the first time it's set*/	
// $myform .= "<tr><td>$value[0]</td><td>now()";
 $timenow = time();

 if($currentvalue[$key]==''||$currentvalue[$key]==0)
 {$time = $timenow;}
 else{$time = $currentvalue[$key];}

 $myform .= form_hidden($key, $time);
 $myform .= "</td></tr>";

 break;

 case 'updatestamp':
/*generates a timestamp each time it's altered or viewed*/
// $myform .= "<tr><td>$value[0]</td><td>now()";

Chapter 13

[207]

 $timenow = time();
 $myform .= form_hidden($key, $timenow);
 $myform .= "</td></tr>";

 break;

 default:
 $place = __FILE__.__LINE__;
 $outcome = "exception: $place:
 switch can't handle $fieldtype";
/*test block: what if the switch doesn't recognise the form type?'*/
 if($test == 'second')
 {
 return $outcome;
 }
/*test block ends*/
 else {

 $this->failure($outcome, $controller);
 }
 }
/*end the foreach loop which generates the form*/
 }
 $myform .= form_hidden('submit',$time);	
 $myform .= form_close();
 $myform .= "</table>";

/*Finally we've built our form and populated it! Now, stuff the form
in an array variable and send it to the model which builds up the rest
of the view.*/
 $data['text'] = $myform;
 $this->display->mainpage($data);
}

A couple of things to explain here. All the form field types are standard, except for
readonly—which is a hidden form field that allows you to see, but not to alter, what
it says. This is not secure, of course: a smart user can easily hack the value. It's just
designed to simplify the choices the user faces.

You'll notice the form points to a function called interim, on whichever controller
called it. Again, that's because you can't address a model directly via its URL. So, if
it was set up by the 'sites' controller, the form points to 'sites/interim' and the values
entered by the user, or from existing data, are packed in the $_POST array and sent
there. As you'll recall from the beginning of this chapter, that function just calls the
crud function insert2, passing on the $_POST array to it as a parameter.

Instant CRUD—or Putting it All Together

[208]

Insert2
Insert2 receives the $_POST array as a parameter and checks to see if it has an 'id'
field set. If yes, it updates that entry. If not, it creates a new entry.

In order that CI's validation class, which requires a $_POST array, can work, our
function renames the array it received as a parameter as $_POST.

 function insert2($controller, $newpost, $test = 'no')
 {
 $myform = '';

/*test the incoming parameters*/
 if(!$this->db->table_exists($controller))
 {
//test here!
 }

 $this->load->library('validation');

/*handle the validation. Note that the validation class works from
the post array, whereas this function only has a $newpost array: same
data, but different name. So we re-create the $_POST array.
*/
 $_POST = $newpost;

/*now build up the validation rules from the entries in our master
array*/
 $errorform = '';
 $newtemparray = $this->form[$controller];
 foreach($newtemparray as $key => $value)
 {$rules[$key]= $value[2];}
 $this->validation->set_rules($rules);

/*and the name fields*/	
 foreach($newtemparray as $key => $value)
 {$fields[$key]= $value[0];}
 $this->validation->set_fields($fields);

 $this->validation->set_fields($fields);

/*now do the validation run*/
 if ($this->validation->run() == FALSE)
 {
/*if the validation run fails, re-present the entry form by calling
the 'insert' function*/
 $id = $_POST['id'];
 $this->insert($controller, $id, 'no', $_POST);

Chapter 13

[209]

 }
 else
 {
/*The validation check was OK so we carry on. Check if there is an id
number*/
 if(isset($_POST['id']) && $_POST['id'] > 0)	
 {
/*if yes: this is an update, so you don't want the id number in the
post array because it will confuse the autoincrement id field in the
database. Remove it, but save it in $tempid to use in the 'where'
condition of the update query, then do the update*/
 $tempid = $_POST['id'];
 unset($_POST['id']);
 $this->db->where('id', $tempid);
 $this->db->update($controller, $_POST);
 if($this->db->affected_rows()== 1)
 {$this->showall($controller, "Entry number
$tempid updated.");}
 else{$this->failure("Failed to update $controller for
id no $tempid", __FILE__,__LINE__);}

/*if no id number, we assume this is a new entry: no need to unset the
post array id as it isn't there! the database will create its own id
number. Do the new entry*/
 $this->db->insert($controller, $_POST);
 if($this->db->affected_rows()== 1)
 {$this->showall($controller,
 "New entry added.");}
 else{$this->failure("Failed to make new entry in
$controller ", __FILE__,__LINE__);}
 }
 }
 }

And that's it. A few hundred lines of code, which allow you to do CRUD on
any table.

The Test Suite
Remember those 'test blocks' in the delete function? Their purpose is simply to detect
if the function is being run 'for real' or for a test, and, if the latter, to make sure that it
returns a value we can easily test.

This is all because, at the end of the CRUD model, we have a 'self-test' suite. This
is called by the test function in any controller (it doesn't matter which one) and
performs generalized CRUD tests using a dummy table.

Instant CRUD—or Putting it All Together

[210]

First in the CRUD class there is a master 'test' function, which only exists to call
the others.

/*now a suite of self-test functions.*/

/*first function just calls all the others and supplies any formatting
you want. Also it builds/ destroys temporary data table before/ after
tests on the database.*/
 function test()
 {
 $return = "<h3>Test results</h3>";
 $this->extendarray();
 $return .= $this->testarray();
 $this->reducearray();
 $return .= $this->testarray();
 $this->testbuild();
 $return .= $this->testdelete();
 $this->testdestroy();
 $return .= $this->testinsert();
 $return .= $this->testinsert2();
 $return .= $this->testshowall();
 $data['text'] = $return;
 $this->display->mainpage($data);
 }

This just assembles any tests you want, and runs them.

However, rather than go through all these functions, let's just show one: the test
function called testdelete().

First, though, we need two functions: one to build, and one to destroy, our special
dummy testing table, 'fred'. The first function destroys any existing 'fred' table,
builds another, and puts a line of test data in it:

/*this function builds a new temporary table. 'fred', in your database
so you can test the CRUD functions on it without losing real data*/
 function testbuild()
 {
 $this->db->query("DROP TABLE IF EXISTS fred");
 $this->db->query("CREATE TABLE IF NOT EXISTS fred (id INT(11)
default NULL, name varchar(12) default NULL)");
 $this->db->query("INSERT INTO fred VALUES (1, 'bloggs')");
 }

Depending on the test you want to run, you can make this more elaborate—e.g.,
populate more fields, or have more rows of data.

Chapter 13

[211]

The second destroys the table so we can start afresh. There ought not to be any value
left in it after we've done the delete test, but in case that failed, or in case we write
other tests, let's make sure:

/*this function destroys the temporary table, to avoid any confusion
later on*/
 function testdestroy()
 {
 $this->db->query("DROP TABLE IF EXISTS fred");
 }

Now we can start to test the delete function:

 function testdelete()
 {
 $result = '<p>Deletion test</p>';

The first test we might do is to make sure that the 'delete' function intercepts any
delete call without a $state parameter of yes, and sends it to the trydelete
function to ask 'are you sure?'

Remember that we want the test to return 'OK' if the program handles each
possibility correctly—not if the possibility itself is 'right' or 'wrong'. So if the 'state'
parameter says 'haggis', which is clearly 'wrong', the test should say 'OK' as long as
the program treats it as 'not yes'! Ideally, we only want a short list highlighting the
failures: if the tests are successful, we don't need to know the details.

First we set up an array, in which each key is an expression we might use in a test,
and the corresponding value is the result we expect:

 $states = array(
 'no'	 =>	 'exception',
 '1' 	 =>	 'exception',
 'haggis'=>	 'exception',
 'yyyes' =>	 'exception',
 'yes' 	=> 	 'OK'
);

 foreach($states AS $testkey => $testvalue)
 {$test = $this->delete('fred', 1, $testkey, 'yes');
/*if you got the value you want, preg_match returns 1*/
 $result .= $this->unit->run(preg_match("/$testvalue/",
$test), 1, $test);
 }

Instant CRUD—or Putting it All Together

[212]

Assuming our code is working properly, that will return:

Our next test is to see how, given a correct state, the delete function reacts to a series
of ID values—including non-integers, negative values, etc. Be careful about the
granularity of the tests. For instance 9999 is a valid ID number in that it is an integer
and greater than 0, but it won't lead to a delete operation as we only have one record,
with an ID of 1! You need to be clear which stage of the process you are testing.

/*given $state set to 'yes', test another array of values for the id
number. Start by building a test table*/
 $this->testbuild();
/*then another array of values to test, and the results you expect..*/
 $numbers = array(
 '9999' => 'OK',
 '-1' => 'exception',
 'NULL' => 'exception',
 '0' => 'exception',
 '3.5' => 'exception',
 '' => 'exception',
 '1' => 'OK'
);

Chapter 13

[213]

/*now do the tests*/	
 foreach($numbers AS $testkey => $testvalue)
 {$test = $this->delete('fred', $testkey, 'yes', 'yes');
 $result .= $this->unit->run(preg_match("/
$testvalue/", $test), 1, $test);
 }
/*destroy the test table, just in case*/
 $this->testdestroy();
/*return the results of this test*/
 return $result;
 }

All being well, that will return something like this:

You can add as many tests as you wish.

Testing helps the development process. As you think about different values to put
in your test arrays, you have to consider whether your code will in fact handle
them gracefully.

It may also help later on, if you change your code and accidentally introduce errors;
and it will reassure you, once the code goes to a production site, to run a test now
and then.

Instant CRUD—or Putting it All Together

[214]

Summary
This has been a long chapter but it has drawn a lot together. We've seen:

How to generalize CRUD operations so that you can do them with two
classes: one for the controller, and one for the CRUD model. The former
needs to be repeated for each table, the latter stays the same.
As a result we could built in various checks and safeguards, as well as tests,
so we can be confident that our CRUD operations are done.

Using CI has allowed us to write all of this in a few hundred lines of (relatively)
simple code, which we can reuse on almost any site we build, provided we obey a
few simple naming and layout rules. To me, that's what frameworks are all about.

•

•

The Verdict on CI
This book started out with some specific examples of how CodeIgniter can save
you time and effort when you are writing websites using PHP. We've gone through
some of the many things CI can do, using as a basis some parts of a website that will
conduct regular tests of other websites. I hope that these examples have shown how
CI makes coding much easier at the macro level.

In this chapter, I'd like to step back a little and look at the overall impact of using the
CodeIgniter framework. Does it make writing a complete application easier? Can it
produce professional results?

When you write a book like this, it's important to divide it up into sections and focus
on one new trick at a time. That means that it's sometimes difficult to see how all the
bits fit together. I hope the 'Instant CRUD' code in the last chapter went some way to
putting different bits of code together, mixing up Active Record and unit testing and
forms. In this chapter, I'd like to show how all the pieces can fit together to deliver a
finished project. In other words, does our website-testing project work?

Taking this top-down look at some specimen code from the site should help us to
draw up a balance sheet:

Where CI helped
1.	 Organizing the site
2.	 Making the code simpler
3.	 Doing things for you (data validation etc.)

Where CI wasn't of much help.

•

•

The Verdict on CI

[216]

Some Code: the 'do_test' Model
What follows is a detailed look at part of one model on our site. This model works
from the 'tests' table and the 'events' table. Its purpose is to control the most central
function of our site i.e. the tests that it does on remote sites. This model:

Links the database tables listing the sites and the tests
Updates another table, which lists events (i.e., each time a test is carried out)
Helps interface with the user, allowing him or her to select a test pattern or to
get information in various formats

Because it's a model, it needs to be called by a controller, and it returns its results to
a view. If the view contains hyperlinks, these in turn call a controller function, which
acts as a 'front end' for another model function.

Here's one of the do_test model's main functions, to generate a table of information
directly from a database query. The idea is to list the sites available and select one to
be tested. If you haven't selected one already, the function generates a list of sites and
asks you to choose. The code looks like this:

/*this function prepares a report on existing tests and allows you to
choose which to do.
 First, it selects a site and reports on that*/
 function report($site=0,$message='')
 {
/*have you chosen a site yet?*/
 $siteid = $this->uri->segment(3, 0);
 if(!$siteid > 0)
 {
 $text = "<table class='table'>";
 $text .= "<tr><td colspan = '2'>Select a site to work
 on</td></tr><tr>";
 $this->db->select('name, id');
 $query = $this->db->get('sites');
 if ($query->num_rows() > 0)
 {
 	 foreach ($query->result() as $row)
 	 {
 $text .= "<tr><td>";
 $text .= $row->name;
 $text .= "</td><td>";
/*note the next line uses the CI anchor function to generate
hyperlinks*/
 $text .= anchor("tests/report/$row->id","Select");
 $text .= "</td></tr>";

•

•

•

Chapter 14

[217]

 	 }
 }
 $response['mytext'] = $text;
 $response['message']= $message;
 $this->display->mainpage($response);
}

The result, when it's called via a controller, looks like this:

Notice there's a hyperlink for each option, so you can select that site. I'd have liked
to use the HTML 'Table' class to do this automatically, but I can't see an easy way to
include hyperlinks in the result rows if I do. But:

CI's active record class makes the database queries much easier to write
CI's anchor function (part of the URL helper) makes it easier to write
the hyperlinks

And, of course, when we come to move our site from my development server to
the web, we know that these two CI functions will ensure that the database
connection information, and the site configuration details such as the URL, are
automatically changed.

CI helped me to organize the code, too. The $siteid variable is passed in as part of a
URI segment when the model is called from the menu.

Notice how the actual web page is created via the mainpage function of the display
model. All the do_test model has to do is take the specific information we need
out of the database, and send it off. The display model ensures that it is formatted
according to our .css file, and laid out on a page with a menu bar, etc.

I'm not being quite proper here, of course, since the table formatting is in the dotest
model. There are far too many angle brackets in there: ideally, they should be in a
view file. However, this would have required us to design a 'view' file specially for
this piece of data. It seemed simpler to do it this way. At least the design information
is kept out of the way in the .css file.

•

•

The Verdict on CI

[218]

Now we move on to the next part of this function. If you have selected a site, the
view now lets us see the tests that have been done for that particular site.

The code looks like this—it's the else loop following the:

if(!$siteid > 0)

In other words, this is what happens if a valid $siteid was passed.

 else
 {
/*ok, you've chosen a site. let's go to town*/
 $this->db->select('sites.name AS sitename, sites.url AS siteurl,
tests.name AS testname, tests.lastdone AS lastdone, tests.id AS
testid, frequency, sites.id AS siteid, tests.type AS type');
 $this->db->join('sites', 'sites.id = tests.siteid');
 $this->db->orderby('frequency desc, sitename asc');
 $this->db->where('sites.id', $siteid);
 $query = $this->db->get('tests');
 if ($query->num_rows() > 0)
 {
 $xrow = $query->row();
 $report = "<table class='table'><tr ><td colspan='4'>Test report on
$xrow->sitename</td></tr>";
 $report .= "<tr class='header'><td width ='25%'>Test</td><td
width ='15%'>Type</td><td width ='10%'>Frequency</td><td width
='40%'>Result</td></tr>";
 	 foreach ($query->result() as $row)
 	 {
 $report .= "<tr><td width ='25%'>";
 $report .= $row->testname;	
 $report .= "</td><td width ='15%'>";
 $report .= $row->type;
 $report .= "</td><td width ='10%'>";
// $report .= $row->lastdone;
 $this->db->select('name');
 $this->db->where('id', $row->frequency);
 $fquery = $this->db->get('frequencies');
 if ($fquery->num_rows() > 0)
 {
 	 $frow = $fquery->row();
 $sid = $frow->name;
 }
 $report .= $sid;
 $report .= "</td><td width ='40%'>";
 $alf = $this->deadline($row->testid);
 if($alf== FALSE)
 {$report .= "Overdue: ";

Chapter 14

[219]

 $report .= anchor("tests/runtest/$row->testid/human",
 'do it now');}
 else{$report .= "Last done: $alf";}
 $report .= "</td></tr>"; 		
 }
 $report .= "<tr><td colspan='4'>";
 $report .= anchor("tests/runalltests/$row->siteid", 'run all
outstanding tests now');
 $report .= "</table>";
 }
 else
 $report = "no tests for this site yet.";}
 $report .="<table class='table'><tr class='header'><td>Other
options</td></tr>";
 $report .= "<tr><td>";
 $report .= anchor("tests/getwrittenreport/$row->siteid/604800",
'Get a written report for last week');
 $report .= anchor("tests/getwrittenreport/$row->siteid/2592000",
'Get a written report for last month');
 $report .= "</tr><tr><td>";	
 $report .= anchor("tests/getbaseremotefiles/$row->siteid", 'Update
remote file list for this site');
 $report .= "</td></tr><table>";
 $response['mytext'] = $report;
$this->display->mainpage($response);
 }

}

The result of this code looks like this:

You can see that it has consulted the database to find out which tests should be
applied to our selected site. There's only one test, a simple 'ping' which is supposed
to be done every 15 minutes.

The Verdict on CI

[220]

It hasn't been done in the last 15 minutes, so it's shown as overdue and a hyperlink
allows me to do it now if I want to. If I click on the hyperlink, I call the tests
controller's runtest function, supplying it with the ID number of the test I want.

The result looks like this:

The system tells me when the test has been done, that there was no problem with it,
and how long it took.

If I now go back to the report function, you'll recall that there were options to
generate historical reports on tests conducted on my selected site over the last week
or the last month. I've only set this site up as an example, so it has no real test history:
but this is how it looks if I do a series of identical tests in quick succession. I've also
added another test, and the report includes that as well.

Chapter 14

[221]

As you can see, we're building up a report that we could show to a client, to
demonstrate that the site was alive and responding when it was tested in different
ways at various times. The time taken for each test to respond is not of much interest
at any one time, but may help us to see a pattern over a longer period.

The function that actually runs the tests is built around a switch statement. It takes
two parameters:

The ID number of the test, from which we look up basic information that we
need to run it: the URL to use, any name/value pairs, and any text we expect
to find if the test is successful.
The type of user. (If the user is 'human', the programme returns more
information in a more user-friendly format—in other words, if you want to
display the result on a screen, call it with the user parameter set to human.
If you want to handle the results programmatically, set this parameter to
something else.)

In this excerpt from the code, we've defined several types of test. Two examples are:

'ping' tests which simply call the URL. If they get a result, they examine it
either for an expected phrase (called 'regex' in the database) or for a generic
HTML term if there is no 'regex' phrase set.
'ete' tests which use some code we developed to make an 'end-to-end' test of
a protected page, logging in and looking for an expected phrase. This code is
not explained in this book as its not included in CI's functionality.

Each test returns a $result and a $timetaken variable; these are entered into
the 'events' table of the database as a record of the test, together with the other
information from the database. Here's the code, which draws heavily on the CI
Active Record model to read from and write to the database, and on the benchmark
class to get the times taken by each test.

/*function to run an individual test*/
 function runtest($testid, $user='human')
 {
/*first, look up the test details */
 $this->db->where('id', $testid);
 $query = $this->db->get('tests');
 if ($query->num_rows() > 0)
 {
 foreach ($query->result() as $row)
 	 {
 $type = $row->type;
/*then work out which type it is and forward it accordingly*/

•

•

•

•

The Verdict on CI

[222]

 switch ($type){
 case 'ping':
 $this->benchmark->mark('code_start');
 $result =$this->pingtest($testid);
 $this->benchmark->mark('code_end');
 $timetaken = $this->benchmark->elapsed_time('code_
start', 'code_end');
 break;

 case 'ete' :
 $this->benchmark->mark('code_start');
 $result = $this->httppost($testid);
 $this->benchmark->mark('code_end');
 $timetaken = $this->benchmark->elapsed_time('code_
start', 'code_end');
 break;	

 default:
 $result = 'noid';
 }

/*work out which site the test belongs to*/
 $this->db->select('tests.siteid AS id');
 $this->db->where('id', $testid);
 $query = $this->db->get('tests');
 if ($query->num_rows() > 0)
 	 {$srow = $query->row();
 $mysiteid = $srow->id;
 }
 else{$mysiteid = 0;}

/*build the rest of the result set and enter it into the database*/	
 $time = now();

 if($result == 'OK')
 {$isalert = 'n';}
 else{$isalert = 'y';}	

 $this->db->set('name', $type);
 $this->db->set('type', 'test');
 $this->db->set('timetaken', $timetaken);
 if($result != '')
 {$this->db->set('result', $result);}
 $this->db->set('testid', $testid);
 $this->db->set('userid', 0);
 $this->db->set('siteid', $mysiteid);
 $this->db->set('time', $time);

Chapter 14

[223]

 $this->db->set('isalert', $isalert);
 $this->db->insert('events');

 $mydata = array(
 'lastdone' 	 => $time,
 'notes' 		 => $result,
 'isalert'	 => $isalert
);
 $this->db->where('id', $testid);
 $this->db->update('tests', $mydata);

/*only return this info to screen if user is human. Otherwise, no need
to do anything more; you've updated the database.*/
 if($user == 'human')
 {$mytext = "<table class='table'><tr>";
 $mytext .= "<td>Test took $timetaken.</td>";
 $mytext .= "<td>Result was ".$result.
 '</td</tr></table>';
 $mytext .= $this->testhistory($testid);
 $response['mytext'] = $mytext;
 $this->display->mainpage($response);}
 else{return $response;}
 }
 }
 }

How we actually print out the test report is an interesting example of CI in action. As
ever, there is a range of choices. You can print out your report the hard way, using
HTML in your code as we did earlier, like this:

/*do database query here!*/
/*now format the results the hard way……*/

 	$report .= "<p>Test history:</p>";
 	$report .= "<table width='100%'><tr><td width ='20%'>Time</
td><td width ='20%'>Name</td><td width ='10%'>Time taken</td><td
width='45%'>Status</td></tr>";if ($query->num_rows() > 0)
 {
 	 foreach ($query->result() as $row)
 	 {
 $report .= "<tr><td width='20%'>";
 $report .= gmDate("j:n:Y H:i", $row->time);
 $report .= "</td><td width='20%'>";
 $report .= $row->name;
 $report .= "</td><td width=10%>";
 $report .= $row->timetaken;

The Verdict on CI

[224]

 $report .= "</td><td width = 45%>";
 if($row->isalert == 'n')
 {$report .= "OK";}
 else
 {$report .= "problem: $row->result";}

 $report .= "</td></tr>";
 	 }
 $report .= "</table>";

On the other hand, you could use the HTML Table library to make life easier:

/*do db query here */
/*format the results using the CI HTML table library*/
 	$report .= "Test history:";

/*redefine our CI table layout if we want to, using our css file*/
 $tmpl = array ('table_open' 	 => '<table border="1",
class="table">',);
 $this->table->set_template($tmpl);

 if ($query->num_rows() > 0)
 {
 $this->table->set_heading('Time of test', 'Name ,'Time
taken','Result');
 $report .= $this->table->generate($query3);
 }
 $this->table->clear();

Clearly, shorter and simpler. The results appear exactly the same, depending only on
the HTML formatting. However, let's look at two issues that this code raises.

When you look more closely, there is a compromise that comes with convenience. In
the first, longer, version, it is possible to format the date:

 $report .= gmDate("j:n:Y H:i", $row->time);

This gives me a 'human' date rather than the Unix date I've actually stored in my
database. In other words, the table says '24 Apr 2007 09 04' rather than '1177405479'.
However, it isn't easy to do this with the CI HTML Table functions. (You might
be able to do this within the database query itself in some database systems; but
MySQL's date functions only operate on dates and times stored in MySQL's unique
date format, and we chose to use the Unix format instead.) We had the same trouble
earlier on when we wanted to generate hyperlinks. You can't do it this way.

Chapter 14

[225]

There's another big question about this. Where should the formatting go? All the
code written previously should appear either in a controller or a model. (As I've
written it, it's in a model, which is called by controllers when the human user clicks
on a hyperlink to generate reports. The reason for putting it in a model is so I can call
the code from several controllers if I need to.)

MVC purists would say that you should never put formatting in a model. It should
be in a view. And, indeed, they've got a point. I might want to rewrite the code to
produce a text report, and use CI's download helper to force the site to download
it in text format rather than display it on the screen. (See Chapter 11 for more about
the download helper.) As it is, I've got to re-write all the code to produce something
formatted with text breaks rather than <tr></tr> pairs—or, even worse, to produce
format in .rtf, or some similar rich-text format.

The other option is to use the alternative PHP syntax or the Template Parser class
and put variables, or placeholders, actually in the views themselves. (See Chapter 5
for a brief coverage of these options.) Then, all you pass to the view is the actual data,
unformatted. While this may satisfy the MVC purists, I find it adds an extra layer of
complexity to the code. But this is a personal view, and many would disagree.

The main point is that CI offers a range of options: it's up to you to choose the one
you are happiest with. There is no 'right' or 'wrong' way: there are just some ways
that work better than others, and some ways that suit your personal style better
than others.

A Balance Sheet
Let's look back over what we've covered in this book. Was CI helpful?

Where CI Helped: Structure
Even from looking at a part of just one model on our site, it's obvious that any
worthwhile application quickly becomes complex. CI, by suggesting and to some
extent enforcing an MVC structure, helps bring some order to that complexity. It's
still possible to forget where you put a piece of code, or even write a similar function
twice in different controllers or models: but it's more likely that your code will be in
logical chunks.

CI's URL mechanism helps you quickly link from one code file to another.

The Verdict on CI

[226]

CI's 'super-object' structure makes sure that the pieces of code can call each other and
pass information around, without namespace conflicts. We are less likely to have
confusions between variables with the same name, because each one is confined to
its own area. At the same time, you can easily access all the CI resources on your site,
from wherever you are in your code.

CI's 'config' files encourage you to build up a centralized collection of information
about your site.

All these benefits mean that your site will be easier to develop, easier to maintain,
and easier for other programmers to understand.

Where CI Helped: Simplicity
There are lots of places where CI helps simplify your code. Perhaps the best
examples come from the Active Record class, but there are many others in this book.
CI is excellent at taking complex chunks of code, hiding them away in a function of
some library class, and allowing you to use them with a simple function call.

Where CI Helped: Extra Functionality
Many CI functions bring additional benefits when you use them. Functions like the
URL class and Active Record automatically refer to your 'config' settings, so you
don't have to keep repeating information, and so that any changes you make in one
place are automatically applied across the site.

There are lots of small examples—the easy way you can hide your email addresses
from robots, for example (see Chapter 3), or that the Active Record class also
prepares your data.

In fact, one of the main learning curves (for me at least) with CI is finding out what
shortcuts are available, and remembering to use them instead of writing it all out the
laborious long-hand PHP way that I'm used to. If this book draws your attention to
some of these shortcuts, it will have served a useful purpose for that alone.

Problems with CI
CI isn't perfect. This really means that it is a balancing act: lightness and ease of use
against complexity and completeness. As somebody once said, 'lightweight' means,
"includes everything I want and nothing that I don't want".

Chapter 14

[227]

Completeness
CI contains functions for almost every regular application you can think of. There are
some exceptions to the subjects covered by the main CI classes, and many of them
are covered by additional libraries contributed by CI users (see the next chapter) or
available through the PEAR repository. The most obvious omissions include:

An AJAX class
A class to write web robots
A class to build a secure site, handling logging in, protected pages, and such
like, as well as basic session maintenance
An improved 'scaffolding' class, producing something that could be used on
a public site rather than purely for development

CI might also take a leaf from the Rails book, and build a code generator class—which
would allow developers to build self-customizing classes.

Ease of Use
CI demands some effort to learn, as you would expect. But, assuming that you
already know some PHP, it's quite easy. In fact, the main 'learning curve' I find is
that, when you know the standard PHP way of doing something, you tend to do it
that way. Only later on, when you are looking in the CI User Guide for something
else, do you realize that you could have done the first thing much more quickly and
simply with a CI class or helper.

Speaking personally, I found two CI classes quite difficult to understand and follow.
These are the XMLRPC class, and the Validation class. This is largely because they
both require interface between different pages, or different sites, in order to
work, and it is sometimes difficult to get this set up properly. (See Chapters 9 and
8, respectively)

I also found it difficult at first to follow the way CI uses its 'super-object'—see
Chapter 7. Getting that right may be the steepest CI learning curve, and mistakes can
lead to some odd and frustrating results until you understand it.

The rest: easy. If in any doubt, you can always explore the source code.

•

•

•

•

The Verdict on CI

[228]

Summary
In this chapter, we've looked at some coding examples, bringing together a lot of the
functions , which we've discussed bit by bit in the preceding chapters.

We've also looked at the way CI helps:

To organize your site
To make coding simpler
To add functionality

I hope this book has persuaded you that, if you want to code dynamic websites in
PHP, CI is a very smart way to do it.

It's also a tribute to the open-source movement, and to the generous people who
support it, that such a rich collection of code is available, freely and universally.
Thanks, Rick!

Taking this theme of generosity further, the last chapter in this book looks at some
other ways you can develop your CI coding—the community of CI users who can
(and usually will) provide help, support, and additional code resources.

•

•

•

Resources and Extensions
Well, we've looked at CI pretty thoroughly, and I hope you're impressed. We've also
developed some of our own code in the process. I'm sure when you looked at some
of my code, you started thinking "I could write that better…". Everyone has their
own style, and CI allows you a lot of freedom.

The CI Community is full of people who write good code, and luckily many of them
are prepared to make it available free of charge to the rest of us. So there's a lot of
code out there that may save you a lot of work. If, to take one example, you want to
create dynamic graphs of data drawn from your database, you could sit down and
write the code yourself, but in fact, at least three people have already tackled this
problem, and all of them have made their code available to you.

This last chapter looks at some of the resources you can draw on, to make your
coding quicker and easier. CI has a thriving and active community of users and
the available resources are changing all the time, so I haven't tried to produce an
exhaustive list, just give you an idea of what's there and where to look.

There's a cautionary note too. There is so much code out there that it can easily be
confusing. People write their pet projects, some brilliant, some just quite good. Many
of us are better at writing code than writing explanations or comments. As a result, it
can be quite difficult to work out just what each library or plug-in does, and whether
it's the best one for you.

So, let's spend the last chapter of this book looking at the available help.

Firstly, let's look at the sources of code.
Then, let's look at a few subjects and compare the code that's available.
Lastly, let's look at more general sources of help: on PHP, MySQL,
and Apache.

•

•

•

Resources and Extensions

[230]

CI's User Forums
CI has two main resources:

The user forums, at http://www.codeigniter.com/forums/ offer a lively
and pretty well continuous discussion of most CI issues. Comments and
suggestions made are not always helpful (or accurate), but there are a
number of 'senior members' who usually make a lot of sense. It's quite a kind
forum, too; people ask very obviously 'newb' questions, but get patient and
helpful replies. Occasionally, Rick Ellis himself chips in, but he quite rightly
doesn't try to field every issue himself.

•

Chapter 15

[231]

The wiki, at http://www.codeigniter.com/wiki/ .This is intended as a
"repository for tips, tricks, hacks, plugins, and enhancements." It contains a
lot of useful code, although coverage is not systematic.

Using the forum or the wiki is easy: you just create a membership for yourself (free)
and then log on and do your thing.

If you are seriously using CI, it's worth setting your RSS reader to subscribe to the
'recent changes' feed on the Wiki.

Remember, though, that:

Not all plug-in writers are as technically competent as Rick Ellis. Their
products may have bugs or issues.
Some of the older plugins written before CI version 1.5 came out may need
altering, because the way that libraries were initialized was changed (see
Chapter 12). This should not be too difficult to do, but it does mean these
library files won't work straight out of the box.

•

•

•

Resources and Extensions

[232]

Video Tutorials
If you want to be literally talked through your first CI application, there are three
excellent video tutorials on the CI site.

An introduction to CI.
Create a blog in 20 minutes. Derek Jones builds basic blog pages, showing
you how to set out the site, make database queries, and present the results
in views.
A link to an external video by Derek Allard
(see http://video.derekallard.com/), which describes,
among other things, how to use the Scriptaculous library to integrate
AJAX and JavaScript effects. Using the view below, this shows you how to
build an auto-complete text entry dropdown, using Ajax to update it.

Available Plug-ins and Libraries
Rick Ellis's intention and hope was that CI users would contribute 'plug-ins' or
libraries to help other CI users. The framework has only been available for about a
year, but already there is a lot of interesting code available.

•

•

•

Chapter 15

[233]

The number of plug-ins and libraries is growing steadily, and those already there are
being changed. So the next section is not a systematic account of what's there: just a
few notes on some of the things you might find useful. I'm sorry that I've had to miss
out a lot of good stuff: please do look at the wiki yourself.

AJAX/JavaScript
The wiki contains two AJAX packages: one using XAJAX, and the other the
prototype.js/scriptaculous.js libraries.

Name Ajax for CI 1.5.1
URL http://www.codeigniter.com/wiki/AJAX_for_CodeIgniter/

Uses the prototype.js and scriptaculous.js libraries
Download includes .js files as well as .php and a full User Guide. (This is not easy to
understand if you don't already have a good grasp of AJAX and the DOM, and it could
usefully have had some longer examples.) Simple to install: place the .php file in your
application/libraries folder and the .js files in your root directory.
Newly released, so very few comments on the CI Forums.
Author siric

Name XAJAX
URL http://www.codeigniter.com/wiki/XAJAX/

A CI 'front end' for the XAJAX library. Includes its own JavaScript 'include' file, xajax.js
Author Greg McLellan—based on the xajax php library (see http://www.

xajaxproject.org/)

Authentication
Wiki users have also wrestled with security: these three packages look at
authenticating your users and avoiding the possible pitfalls of storing session data
in cookies.

Resources and Extensions

[234]

Name FreakAuth_light
URL http://www.4webby.com/freakauth/

This includes a library to perform
user login/logout
user registration
remember password
change password
website reserved areas locking

 a backend administration application to:
manage users
manage administrators

It allows you to set four levels of access (from superadmin down to guest) and then to set
a 'check' method in controllers. This can be set either in the controller constructor or in
individual functions. If a user invokes the controller (or the individual function) the code
checks that he/she is logged in, consulting

•
•
•
•
•

•
•

There's an extensive discussion of this code going on in the CI forums at the time of
writing. Some errors have been identified, but the code is now on its third release and it
looks as if the problems are being resolved.
Author danfreak

Name Auth
URL http://www.codeigniter.com/wiki/auth
This package offers login/logout functionality, registration, with activation, and even a
forgotten password reset. It's quite complex to set up: you have to set up a database table,
include some new core libraries and helpers, and also do some configs.
Works with CI 1.5.
Author Anonymous

Name DB Session
URL http://www.codeigniter.com/wiki/DB_Session/

http://dready.jexiste.fr/dotclear/index.
php?2006/09/13/19-reworked-session-handler-for-code-
igniter

Alters the CI session class (see Chapter 6) which stores session data in cookies. (Which can
be encrypted, of course.) This class only stores a session identifiers: you add an extra table
to your database, and it looks up all the rest of the session information there.
Works with CI 1.5.
Author dready

Chapter 15

[235]

External Sites
There are some 'power users' of CI who contribute code of their own. One good
example is Glossopteris, a site run by a US web design company. This makes
available some of their own libraries, for instance (at http://www.glossopteris.
com/journal/post/table-relationships-in-ci) another CRUD library, which
they claim "will allow for complex table inter-relationships to be assigned and simple
CRUD actions to be completed." This follows the Rails precedent quite closely: you
can define relationships between tables such as 'has one' and 'has many' links. The
code is available, but could do with more comments or a user guide.

Another development is CI_Forge (http://www.ciforge.com/), which is intended
as, "A place for projects designed to enhance or extend the lightweight PHP
framework CodeIgniter." It provides Subversion and Trac hosting, a wiki, a
bug/issue tracker, and change log support. This is a new application, but (as at July
2007) already hosts 20 projects.

Comparisons: Which Charting Library to Use?
That's quite a range of options. Sometimes, there can be almost too much choice.

To demonstrate this, let's look at three options for doing the same thing, and see how
they differ. Making dynamic charts of data is not an easy thing to code on your own.
But it does make your site look good.

Let's look at three add-ons available for CI that do just this, and try to compare their
strengths and weaknesses, as well as look at the results they produce.

Name 3d-pie-chart
URL http://codeigniter.com/wiki/3d-pie-chart/

Generates a pie chart from two arrays of data (labels and values) and saves it on your site.
Looks great, but this is all it does.

Simple to set up: put the piechart.zip file in your application/libraries folder,
and write a controller based on the example. Requires a font, and you need to modify a
view to display the results. Works with CI version 1.5
Author Craig

Resources and Extensions

[236]

Name Panaci
URL http://bleakview.orgfree.com/ or

http://codeigniter.com/wiki/Charting/
Dynamically generates charts and graphs, including bar, line, area, step, and impulse charts
(but not pie charts). The wiki entry states: "Please note, this is NOT a commercial grade
library such as jpgraph or chartdirector, but it is quite adequate for basic plots". The code
example, and specimen plot, below, show what it looks like and how to use it.

Works with CI version 1.5. As with 3d-pie-chart, you copy the file into your
application/ libraries folder, and call it from your controller, supplying basic
parameters and an array of data.
Short discussion in CI Forums, no major bugs found at time of writing.
Author Oscar Bajner

Chapter 15

[237]

Name JP Graph
URL http://codeigniter.com/wiki/JP_Graph/

This is not strictly a plug-in: it's code that allows you to interface between CI and the
external JP Graph library. You need to download the JP Graph library, create a series of
plug-ins for each graph type you want to use, and then call the plug-ins from a controller as
you need them.

As these examples form its website, http://www.aditus.nu/jpgraph/features.
php show, JP Graph offers a much wider range of charts, and they look great.

There are two disadvantages with JP Graph. As the wiki entry says: "Keep in mind that
JpGraph has a very large codebase, so be sure to include only the specific libraries you need
for each chart." Secondly, JP Graph is free for personal use, but not for commercial use.
Author Aditus Consulting

Resources and Extensions

[238]

Three options: the first two relatively simple, the second more complex. It depends
on what you need (and if you are prepared to pay).

CRUD: the Final Frontier
You need to write CRUD pages in almost every application. It seems simple, and
logical, to automate the process of creating those pages! They are tantalizingly
standard—and yet they have deceptively large numbers of possible variations. It's
impossible to write one without starting to impose your own rules and assumptions
on the user. Also, there is always a trade-off between covering more and more
possible options on the one hand, and simplicity of use on the other. The more
exceptions and possibilities you try to cover, the more complex your code becomes
and the larger the download is.

So, quite a few people have had a go at simplifying the basic CRUD operation.

We tried our hand at developing our own CRUD application in Chapter 13. This was
a fairly simple model that cut a lot of corners and only allowed you to use a subset
of the available HTML form objects; but it does manage to incorporate CI's
validation functions.

We've already mentioned, in this chapter, the Glossopteris library.

Another interesting approach is 'CodeCrafter', which is listed on the CI wiki
and available from Datacraft Software Consulting in South Africa, at:
http://www.datacraft.co.za/index.php?contents=codecrafter/codecraft.
This claims that, "CodeCrafter will help you generate your entire CodeIgniter
application in just seconds." It comes with a 26 page online manual, which shows
you how to use its interface to generate CI code. This is a different method to most
of the other offerings reviewed here: it builds the CI code for you, using a graphical
interface, rather than providing libraries or code for you to patch in.

SuperModel (see http://codeigniter.com/wiki/SuperModel/) claims: "The
SuperModel Library is an extension to models to automate most of the mundane
form-generation and validation tasks. Think of it as scaffolding on steroids."

The author's comments explain the frustrations of writing this sort of code—and
also the risk for users. He says: "Please note this library is a work-in-progress. I am
currently making many changes, including API changes that will break applications.
As I write this (May 30/2006) I am working on implementing one<>many and
many<>many joins……It's impossible to write something like this, but stay as
flexible like CodeIgniter is. Unfortunately, this library forces you into doing some
things a certain way. I've tried to be as flexible as possible, but at the same time, there
has to be a line drawn between being flexible, and being completely bloated. That's

Chapter 15

[239]

why this is an external 3rd party library—you're free to implement models the way
you want, or use some other similar 3rd party library that does something similar."

Resources for Other Programmes, e.g.
Xampplite, MySQL, PHP
There are a lot of useful resources for PHP. Let's just touch on some of them briefly.

PHP itself can be downloaded free from www.php.net, which also includes a
full manual.
A low-cost PHP editor can be bought from MP Software at
http://www.mpsoftware.dk/.

There are many good books on PHP, including PHP Programming with PEAR, by
Carsten Lucke, Aaron Wormus, Stoyan Stefanov and Stephan Schmidt, published
by Packt.

To run a local web server on your own machine, try looking at
http://www.apachefriends.org/en/index.html—a site that offers free
downloads of the XAMPP package. This installs���������������������������������� an Apache web server with MySQL,
PHP, and Perl. If the XAMPP package is too comprehensive for you, try Minixampp
from the same site, on which the code used in this book was written.

MySQL too has its own web page—http://www.mysql.com/—though if you want
to download the latest versions for free, go to http://dev.mysql.com/. (Bear in
mind though that many ISPs don't use the latest versions. Although MySQL is up to
version 5, most ISP's are still using Version 4. This prevents you using some of the
more interesting new features, like stored procedures.) See, Creating your MySQL
Database: Practical Design Tips and Techniques, by Marc Delisle, published by Packt.

Although MySQL comes with its own tools, the most popular (and most common)
tool is PHPMyAdmin. (See Mastering phpMyAdmin 2.8 for Effective MySQL
Management, also by Marc Delisle, published by Packt.)

•

•

Resources and Extensions

[240]

Summary
In this Chapter, we've looked at some of the resources available to you when you
start to code with CI. There's a lot of ready-made code available. You have to look
before you use: don't just take the first plug-in or library that seems to do what you
want and start using it. You need to study each offering to see what it really does,
and it also helps to go through the code and make sure you understand it. However,
if you are prepared to do this, you can find libraries at different levels of scope and
complexity that will take on many of the tasks that would otherwise have involved a
lot of hand coding.

In particular, we looked at libraries for

AJAX and JavaScript
Authentication
Charting
CRUD

Lastly, we looked at some of the resources available for PHP and MySQL and for
running a local web server.

•

•

•

•

Index
A
Active Record class

about 51-53
advantages 54, 55
automatic functionality 54
queries, creating 59, 60
queries, deleting 61
queries, reading 56, 57
queries, updating 59, 60
query results, displaying 58
time, saving 54
with default query styles 61

array
about 189
parameters 190

B
benchmarking class 121

C
charting libraries

about 235
comparing 235-237

classes, CodeIgniter
add ons 181-183
date helper 141
inflector helper 141
language class 141
text helper 141

code, testing
end-to-end tests 112
need for 111, 112
unit testing 112
uses of CodeIgniter 112

CodeIgniter. See also CodeIgniter site
about 12
advantages 7-11
config files, using 24
configuration file 24
configuration settings 51
disadvantages 16, 17, 226
downloading 22
file structure 23
file types 23
for communication 127
framework 12
installing 22
interface problems 171
license 18
open source business model 15, 16
prerequisites 21
requirements 22
setting up 21
syntax rules 33
testing 25
URL helper 46
uses 7
version changes 177

CodeIgniter site. See also CodeIgniter
architectural issues 73
class types 34
designing 85, 86
file types 34-36
navigating 86-90
table structure 37

configuration settings, CodeIgniter
configuration file 51
database 52
dbdriver 52
hostname 52

[242]

password 52
username 52

controllers
default controller 33
designing 39-41
parameters, getting to function 40, 41
syntax rules 34
welcome controller 31

copy by reference 103
CRUD

about 185, 238
array 189
concept 186
data, reading 195
defining 189
functions 192
insert 201
insert2 208
parameters 190
showall 192
test suite 209

D
database

designing 53
setting up, for website 63-66

database tables
about 189
rules 189

date helper
about 142
date formats 142
date formats, converting 143
time zones, generating 143, 144

diagnostic tools 174
display model 78, 79
dotest model

about 216
database, reading from 221-223
database, writing to 22-223
parameters, switch statement 221
report 220
table information, generating from database

query 216
test loop 218, 219
test report, printing 223, 224

test types 221
download helper

about 158
database, downloading as a text file

158-160

E
email class

working with 136-139
error handling class 113

F
file helper

about 156
arrays, comparing 157
file, writing 156
loading 156

file upload class
about 160
loading 160
working of 160-165

form helper
about 74
advantages 74-77

forums
CodeIgniter forum 230
CodeIgniter wiki 231

framework
about 12
PHP frameworks 13
Rails 13
Ruby on Rails 13

FTP class
remote files, testing 127-129

I
image class

about 165
crop, fucntions 166
fucntions 166
resize, fucntions 166
resizing 166, 167
rotate, fucntions 166
watermark, fucntions 166

[243]

inflector helper 145
insert 201
insert2 208
interface problems

about 172
CodeIgniter version changes 177
config files 173
databases 172
diagnostic tools 174
OS difference 173
PHP version difference 173
URLs 172

L
language class

about 146
webpage, translating 146-149

library class
for security 92

M
menu

creating 48

N
nested views

about 70
header view, creating 70-72
parameters 72

O
objects

about 99
super-object 100

OOP
about 99
objects 99

P
PHP syntax

long syntax 69
short syntax 69

plugins and libraries
AJAX package 233

authentication packages 233, 234
charting libraries 235-237
CRUD 238
external sites 235
JavaScript package 233

profiler class 122

Q
queries, Active Record

creating 59, 60
deleting 61
reading 56, 57
results, displaying 58
updating 59, 60

R
remote files

testing, FTP class used 127-129
resources

CodeIgniter forum 230
CodeIgniter wiki 231
MySQL 239
PHP 239
video tutorials 232
XAMPPLite 239

Ruby on Rails 13

S
security/sessions

library class 91, 92
sessions, turning into security 94-96

session class 91
showall 192
standard controller 187
super-object

code, adding 105, 106
drawbacks 106-108
log, tracing 101
working with 100-103

T
table class

about 150
HTML tables, writing 150-152

[244]

pages, caching 152, 153
text helper

about 145
inflector helper 145
strings, truncating 145

U
unit test class 115
unit testing

about 112
controlling 124
criteria 117, 118
example 118-120
mock database, testing with 123
timing 124

V
validation class

about 79
controller, setting up 81
forms, setting up 81, 82
validation, setting up 80

version changes, CodeIgniter
library classes, initializing 179

model, calling 178
model, loading 178
updating 179-181

views
designing 37, 39
nested views 70-73
syntax rules 34
working with 32
writing 67-69

X
XMLRPC

about 129
debugging 134, 135
exchanges, formatting 132-134
issues 135, 136
server-client communication 131, 132

Z
zip class

about 169
file, compressing 169

	CodeIgniter for Rapid PHP Application Development
	Table of Contents
	Preface
	Chapter 1: Introduction to CodeIgniter
	What can CodeIgniter Do for You?
	Save Time
	Make Your Site More Robust
	Keep Your Links Up-To-Date Automatically
	Save Database Crashes: 'prep' Your Data

	Make Your Code Bolder
	Send Email Attachments without Hassles
	Save Bandwidth by Zipping Files That Use

	Yes, But…What is CodeIgniter? What are F
	And Who is That Man?
	The 'Open Source' Business Model
	What CI Doesn't Do
	License
	Summary

	Chapter 2: Two Minutes' Work: Setting up a CodeIgniter Site
	Prerequisites
	Installing CodeIgniter
	Exploring the File Sructure
	The Configuration File
	Does it Work?
	Summary

	Chapter 3: Navigating Your Site
	MVC—Just Another Acronym?
	The Structure of a CI Site: Controllers and Views
	The Welcome Controller
	Working with Views
	The Default Controller

	CodeIgniter Syntax Rules
	Controller
	View

	Types of Files or Classes on a CI Site
	What are All Those Folders For?
	Designing a Better View
	Designing a Better Controller
	Getting Parameters to a Function
	Passing Data to a View

	How CI Classes Pass Information and Control to Each Other
	Calling Views
	Calling Functions Directly
	Interacting with Controllers
	It's Just Like an Egg-Cup
	An Example of a CI Helper: the URL Helper
	A Simple Library Example: Creating a Menu

	Summary

	Chapter 4: Using CI to Simplify Database
	Configuration Settings
	Designing the Database for Our Site
	Active Record
	Advantages of Using the Active Record Class
	Saving Time
	Automatic Functionality

	Read Queries
	Displaying Query Results
	Create and Update Queries
	Delete Queries
	Mixing Active Record and 'Classic' Styles

	Summary
	Chapter Appendix: MYSQL Query to Set Up 'websites' Database

	Chapter 5: Simplifying HTML Pages and Forms
	Writing a View
	Long and Short PHP Syntax
	Nesting Views
	Practical Issues of Site Architecture
	CI's Form Helper: Entering Data
	Form Helper Advantage One: Clarity
	Form Helper Advantage Two: Automation

	My 'Display' Model
	CI's Validation Class: Checking Data Easily
	Set Up Validation
	Set Up the Controller
	Set Up the Forms

	Summary

	Chapter 6: Simplifying Sessions and Security
	Starting to Design a Practical Site with CI
	Moving Around the Site
	Security/Sessions: Using Another CI Library Class
	Turning Sessions into Security

	Security
	Summary

	Chapter 7: CodeIgniter and Objects
	Object-Oriented Programming
	Working of the CI 'Super-Object'
	Copying by Reference

	Adding Your own Code to the CI 'Super-Object'
	Problem with the CI 'Super-Object'
	Summary

	Chapter 8: Using CI to Test Code
	Why Test, and What For?
	CI's Error Handling Class
	CI's Unit Test Class
	When to Use Unit Tests
	Example of a Unit Test

	CI's Benchmarking Class
	CI's Profiler Class
	Testing with Mock Database
	Control and Timing
	Summary

	Chapter 9: Using CI to Communicate
	Using the FTP Class to Test Remote Files
	Machines Talking to Machines Again—XML-RPC
	Getting the XML-RPC Server and Client in Touch with Each Other
	Formatting XML-RPC Exchange
	Debugging

	Issues with XML-RPC?
	Talking to Humans for a Change: the Email Class
	Summary

	Chapter 10: How CI Helps to Provide Dynamic Information
	The Date Helper: Converting and Localizing Dates
	Working with Text: the Text Helper and Inflector Helper
	Going International: the Language Class
	Making HTML Tables the Easy Way: the Table Class
	Caching Pages
	Summary

	Chapter 11: Using CI to Handle FIles and Images
	The File Helper
	The Download Helper
	The File Upload Class
	CI's Image Class
	Easy File Compression with the CI Zip Class
	Summary

	Chapter 12: Production Versions, Updates, and Big Decisions
	Connections: Check the Config Files
	URLs
	Databases
	Other config Files

	Look Out for PHP 4/5 and Operating System Differences
	Diagnostic Tools

	Coping with Change in New CI Version
	How to Load Models, and What to Call Them
	How to Initialize Your own 'library' Classess

	So Should I Update If a Ne
	How to Add On to CI's Basic Classes
	Summary

	Chapter 13: Instant CRUD—or Putting it All Together
	The CRUD Model: Design Philosophy
	The Standard Controller Format
	The Database Tables
	The Heart of the Model: the Array
	Function by Function: the CRUD Model
	Showall
	Reading the Data
	Delete and Trydelete

	Insert
	Insert2
	The Test Suite

	Summary

	Chapter 14: the Verdict on CI
	Some Code: the 'do_test' Model
	A Balance Sheet
	Where CI Helped: Structure
	Where CI Helped: Simplicity
	Where CI Helped: Extra Functionality

	Problems with CI
	Completeness
	Ease of Use

	Summary

	Chapter 15: Resources and Extensions
	CI's User Forums
	Video Tutorials
	Available Plug-ins and Libraries
	AJAX/JavaScrip
	Authentication
	External Sites
	Comparisons: Which Charting Library to Use?
	CRUD: the Final Frontier

	Resources for Other Programmes, e.g. Xampplite, MySQL, PHP
	Summary

	Index

